Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:6
  • full-text downloads in 30 days:5

Contents

article: 9 from 11  
Back back to result list
2020, vol. 24, iss. 1, pp. 35-38
The effect of osmotic dehydration and starch coating on the microbiological stability of apples
aUniversity of Novi Sad, Faculty of Technology
bInstitute for Food Technology, Novi Sad
cInstitute of General and Physical Chemistry, Belgrade

emailsuput.danijela@gmail.com
Project:
Osmotic dehydration of food - energy and ecological aspects of sustainable production (MESTD - 31055)

Keywords: apple; osmotic dehydration; molasses; starch coating; microbial profile
Abstract
This paper examines the effect of starch coating and the osmotic dehydration in sugar beet molasses on the microbiological stability of apples. One-half of the osmotically treated/untreated apples were protected by starch coating, resulting in four sample groups (namely the K, P, OD and OD+P sample groups). E. coli, Salmonella spp. and Listeria monocytogenes were not detected in any of the samples. Enterobacteria were present in the K and P samples in the first four days (indicating a downward trend), but were not subsequently detectable. The total number of microorganisms (TVC) was found to be uniform in each sample group. However, the TVC values were significantly higher in the K and P sample groups than those of the OD and OD + P samples. Yeasts and molds were detected in the K and P samples, whereas the presence of yeasts and molds in the OD and OD+P samples was confirmed only after four days of storage. The results obtained indicate that osmotic dehydration is a suitable method for maintaining microbial stability, whereas starch coating did not justify its purpose.
References
*** (2008) SRPS ISO 16649-2: Mikrobiologija hrane i hrane za životinje - horizontalna metoda za određivanje broja b - glukuronidaza pozitivne Escherichia coli - tehnika brojanja kolonija na 44 °C pomoću 5-bromo-4-hloro-3 indolil b-D-glukuronida. Deo 2
*** (2017) SRPS EN ISO 21528-2: Mikrobiologija hrane i hrane za životinje - horizontalna metoda za otkrivanje i određivanje broja Enterobacteriaceae - metoda brojanja kolonija - temperatura inkubiranja je 37 °C. Deo 2
*** (2011) SRPS ISO 21527-2: Mikrobiologija hrane I hrane za životinje - horizontalna metoda za određivanje broja kvasaca I plesni - tehnika brojanja kolonija u proizvodima sa aktivnošću vode manjom od ili jednakom 0,95. Deo 2
*** (2017) SRPS EN ISO 6579-1: izuzev Aneksa D: Mikrobiologija hrane i hrane za životinje - horizontalna metoda za otkrivanje, određivanje broja i serotipizaciju Salmonella spp. - otkrivanje Salmonella spp. Deo 1
*** (2017) SRPS EN ISO 11290-1: Mikrobiologija hrane i hrane za životinje - horizontalna metoda za otkrivanje i određivanje broja Listeriamonocytogenes i Listeria spp. - metoda otkrivanja - temperatura inkubiranja u delu potvrđivanje L. monocytogenes je 37°C. Deo 1
*** (2014) SRPS EN ISO 4833-1: Mikrobiologija lanca hrane - horizontalna metoda za određivanje broja mikroorganizama - brojanje kolonija na 30 °C tehnikom nalivanja ploče. Deo 1
Azarakhsha, N., Osmana, A., Ghazalia, H.M., Tanb, C.P., Adzahanb, N.M. (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology, 88, 1-7
Bilbao-Sa'inz, C., Avena-Bustillos, R.J., Wood, D.F., Williams, T.G., McHugh, T.H. (2010) Composite Edible Films Based on Hydroxypropyl Methylcellulose Reinforced with Microcrystalline Cellulose Nanoparticles. Journal of Agricultural and Food Chemistry, 58(6): 3753-3760
Chiumarelli, M., Hubinger, M.D. (2012) Stability, solubility, mechanical and barrier properties of cassava starch: Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids, 28(1): 59-67
Choi, W.S., Singh, S., Lee, Y.S. (2016) Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of 'Formosa' plum (Prunus salicina L.). LWT - Food Science and Technology, 70: 213-222
Cissé, M., Polidori, J., Montet, D., Loiseau, G., Ducamp-Collin, M.N. (2015) Preservation of mango quality by using functional chitosan-lactoperoxidase systems coatings. Postharvest Biology and Technology, 101: 10-14
Conforti, F.D., Zinck, J.B. (2002) Hydrocolloid-Lipid Coating Affect on Weight Loss, Pectin Content, and Textural Quality of Green Bell Peppers. Journal of Food Science, 67(4): 1360-1363
Doe, E.P. (2002) Fish drying. in: Bremner A. [ed.] Safety and quality issues in fish processing, Woodhead Publishing Limited
Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A., Ibarz, A. (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6): 292-303
Filipović, V.S., Ćurčić, B.Lj., Nićetin, M.R., Plavšić, D.V., Koprivica, G.B., Mišljenović, N.M. (2012) Mass transfer and microbiological profile of pork meat dehydrated in two different osmotic solutions. Hemijska industrija, vol. 66, br. 5, str. 743-748
Ghidelli, C., Mateos, M., Rojas-Argudo, C., Pérez-Gago, M.B. (2015) Novel approaches to control browning of fresh-cut artichoke: Effect of a soy protein-based coating and modified atmosphere packaging. Postharvest Biology and Technology, 99: 105-113
Jiménez-Hernández, J., Estrada-Bahena, E.B., Maldonado-Astudillo, Y.I., Talavera-Mendoza, Ó., Arámbula-Villa, G., Azuara, E., Álvarez-Fitz, P., Ramírez, M., Salazar, R. (2017) Osmotic dehydration of mango with impregnation of inulin and piquin-pepper oleoresin. LWT - Food Science and Technology, 79: 609-615
Kerch, G. (2015) Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends in Food Science & Technology, 46(2): 159-166
Khin, M.M., Zhou, W., Perera, C. (2005) Development in the Combined Treatment of Coating and Osmotic Dehydration of Food: A Review. International Journal of Food Engineering, 1(1)
Lončar, B., Filipović, V., Nićetin, M., Knežević, V., Pezo, L., Plavšić, D., Šarić, Lj. (2014) Microbiological profile of fish dehydrated in two different osmotic solutions. Acta Univeritatis Sapientiae, Alimentaria, 7: 73-80
Lončar, B., Filipović, V., Nićetin, M., Knežević, V., Gubić, J., Plavšić, D., Pezo, L. (2015) Characterisation of chicken breast cubes osmotically treated in sugar beet molasses. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 186-188
Mohammadi, A., Hashemi, M., Hosseini, S.M. (2015) Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biology and Technology, 110: 203-213
Müller, C.M.O., Laurindo, J.B., Yamashita, F. (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloids, 23(5): 1328-1333
Nićetin, M., Lončar, B., Filipović, V., Knežević, V., Kuljanin, T., Pezo, L., Plavšić, D. (2015) The change in microbiological profile and water activity due to the osmotic treatment of celery leaves and root. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 193-196
Petrotos, K.B., Lazarides, H.N. (2001) Osmotic concentration of liquid foods. Journal of Food Engineering, 49(2-3): 201-206
Popović, S.Z., Lazić, V.L., Hromiš, N.M., Šuput, D.Z., Bulut, S.N. (2018) Biopolymer Packaging Materials for Food Shelf-Life Prolongation. in: Grumezescu A.M., Holban A.M. [ed.] Handbook of food bioengineering: Biopolymers for food design, United Kingdom: Academic Press, Vol. 20: 223-277
Rascón, M.P., Huerta-Vera, K., Pascual-Pineda, L.A., Contreras-Oliva, A., Flores-Andrade, E., Castillo-Morales, M., Bonilla, E., González-Morales, I. (2018) Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT - Food Science and Technology, 92: 490-496
Rastogi, N.K., Raghavarao, K.S.M.S., Niranjan, K., Knorr, D. (2002) Recent developments in osmotic dehydration: Methods to enhance mass transfer. Trends in Food Science & Technology, 13(2): 48-59
Rastogi, N.K., Raghavarao, K.S.M.S. (2004) Mass transfer during osmotic dehydration of pineapple: Considering Fickian diffusion in cubical configuration. LWT - Food Science and Technology, 37(1): 43-47
Sacchetti, G., Gianotti, A., Dalla, R.M. (2001) Sucrose-salt combined effects on mass transfer kinetics and product acceptability: Study on apple osmotic treatments. Journal of Food Engineering, 49(2-3): 163-173
Santhurn, S.J., Arnaud, E., Zakhia-Rozis, N., Collignan, A. (2012) Drying: Principles and Application. in: Hui Y.H. [ed.] Handbook of Meat and Meat processing, Taylor & Francis
Synowiec, A., Gniewosz, M., Kraśniewska, K., Przybył, J.L., Bączek, K., Węglarz, Z. (2014) Antimicrobial and antioxidant properties of pullulan film containing sweet basil extract and an evaluation of coating effectiveness in the prolongation of the shelf life of apples stored in refrigeration conditions. Innovative Food Science & Emerging Technologies, 23: 171-181
Šuput, D., Lazić, V., Pezo, L., Gubić, J., Šojić, B., Plavšić, D., Lončar, B., Nićetin, M., Filipović, V., Knežević, V. (2019) Shelf life and quality of dehydrated meat packed in edible coating under modified atmosphere. Romanian Biotechnological Letters, 24(3): 545-553
Wang, S., Marcone, M.F., Barbut, S., Lim, L.T. (2012) Fortification of dietary biopolymers-based packaging material with bioactive plant extracts. Food Research International, 49(1): 80-91
 

About

article language: English
document type: Original Scientific Paper
DOI: 10.5937/jpea24-25505
published in SCIndeks: 16/05/2020

Related records