- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:23
- preuzimanja u poslednjih 30 dana:8
|
|
2020, vol. 74, br. 1, str. 30-38
|
Tangenta oporavka respiratornih mišića nakon zadržavanja daha - studija afirmacije metoda saznanja
The respiration muscles recovery tangent after the breath holding: The study of affirmation of methods of knowledge
aUniverzitet Singidunum, Tehnički fakultet, Beograd + Lola institut, Beograd bUniverzitet u Beogradu, Fakultet sporta i fizičkog vaspitanja
e-adresa: mirko11ostojic@gmail.com
Sažetak
Predmet ovog rada je individualna konstanta respiracije, izračunata preko jednačine disanja respiratorne muskulature. Ovo, neeksperimentalno posmatranje je sprovedeno na uzorku studenata Fakulteta sporta i fizičkog vaspitanja u Beogradu (N=30). Merenje je za cilj imalo akviziciju i analizu srednjeg vremena snage signala površinske elektromiografije (sEMG) u protokolima, pre i nakon produženog zadržavanja akta disanja. Rezultati istraživanja su pokazali da pojedinačni koeficijent "kontrolne pauze" (Cp) predstavlja individualnu karakteristiku respiratornih mišića ispitanika. U uzorku relativno treniranih i mladih osoba oba pola, utvrđeno je da posle zadržavanja daha, do trenutka tzv. "udara" (progresija respiracije da se izvrši adaptacija na stresnu situaciju), vreme oporavka ima linearni tok i direktno je povezano sa angažovanošću praćenih respiratornih mišića ispitanika, odnosno indirektno kapaciteta ispitanika da brže asimiluje kiseonik iz udahnutog vazduha. U praktičnom značenju ovog istraživanja ističemo da je pojedine rezultate moguće korelirati sa jednačinom disanja respiratornih mišića, a sa ciljem saznanja i približavanja realnoj metodi za predočenu individualnu konstantu disanja.
Abstract
The subject of this research is the individual respiration constant calculated based on the respiratory musculature breathing equation. This non-experimental observation conducted on a sample of students from the Faculty of Sports and Physical Education in Belgrade (N=30). The measurement aimed at the acquisition and analysis of the average power of the surface electromyography signal (sEMG) in the protocols before and after prolonged respiratory retention. The results of the research showed that the individual coefficient of control break (Cp) represents a unique characteristic of the respiratory muscles of the subjects. In a relatively trained sample of young people of both sexes, it determined that after holding their breath, until the moment of the so-called "stroke" (progression of respiration to adapt to a stressful situation), recovery time has a linear course and is directly related to the engagement of the monitored respiratory muscles of the subjects, i.e., indirectly the capacity of the individual to assimilate O2 from the inhaled air. In the practical meaning of this research, we emphasize that individual results can be correlated with the equation of respiration of respiratory muscles, to find out and approach the original method for the presented personal respirational constant.
|
|
|
Reference
|
|
Azab, N.Y., El, M.I.I., Abd, E.A.G.A., Taha, M.H. (2015) Breathing pattern in asthmatic patients during exercise. Egyptian Journal of Chest Diseases and Tuberculosis, 64(3), 521-527
|
|
Barret, K.E., Barman, S.M., Boitano, S., Heddwen, L.B. (2010) Ganong's review of medical physiology. McGraw-Hill Companies, Twenty-third Edition
|
|
Boxtel, V.A. (2001) Optimal signal bandwidth for the recording of surface EMG activity of facial, jaw, oral, and neck muscles. Psychophysiology, 38(1), 22-34
|
1
|
de Luca, C.J. (1997) The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 13(2), 135-163
|
|
Dos, R.I.M.M., Ohara, D.G., January, L.B., Basso-Vanelli, R.P., Oliveira, A.B., Jamami, M. (2019) Surface electromyography in inspiratory muscles in adults and elderly individuals: A systematic review. J Electromyogr Kinesiol, 44, 139-155
|
|
Guyton, A.C. (2005) Physiology of the human body. Philadelphia: Sunder, College Publishin
|
|
Henderson, Y. (1940) Carbon dioxide. u: Cyclopaedia of medicine, Philadelphia: FA Davis Co
|
|
Kohden, N. Neurofax brochure. https://www.medwrench.com/equipment/4722/nihon-kohden-eeg-1200. 1. juna 2020
|
1
|
Lejun, W., Qineng, S., Guoqiang, M., Mingxin, G., Wenxin, N., Jun, Q. (2020) Pedaling performance changing of elite cyclists is mainly determined by the fatigue of hamstring and vastus muscles during repeated sprint cycling exercise. BioMed Research International, 2020(1), 1-9
|
|
Merletti, R., Muceli, S. (2019) Surface EMG detection in space and time: Best practices. Journal of Electromyography and Kinesiology, 49. 102363
|
|
Milosavljević, M. (2017) Robust digital processing of speech signals. New York: Springer
|
|
Ostojić, M. (2018) Umeće disanja [Breathing skills]. Beograd: Pešić & Sinovi
|
|
Ostojić, M., Milosavljević, M. (2019) The possibility of electromyography measuring as the answer to breath holding. u: Sinteza 2019, International scientific conference on information technology and data related research 'Electrical Energy Markets and Engineering Education and Advanced Engineering', Novi Sad, 20. Apri, 307-312
|
|
Ostojić, M., Milosavljević, M., Kovačević, A., Stokić, M., Stefanović, Đ., Mandić-Gajić, G., Jeličić, J. (2020) Changes in the power of surface electromyogram during breath-holding. Serbian archives of medicine
|
|
Papyris, S., Kotanidou, A., Malagari, K., Roussos, C. (2002) Clinical review: Severe asthma. Critical Care, Feb;6(1), 30-44
|
|
Rakimov, A. (2014) Normal breathing. Toronto: Amazon Digital Services
|
|
Raković, D. (2008) Biophysics. Belgrade: IASC & IEFPG
|
|
Segizbaeva, M.O., Timofeev, N.N., Donina, Zh.A., Kur'yanovich, E.N. (2014) Effects of inspiratory muscle training on resistance to fatigue of respiratory muscles during exhaustive exercise. Adv Exp Med Biol, 840, 35-43
|
|
van Leuteren, R.W., Hutten, G.J., de Waal, C.G., Dixon, P., van Kaam, A.H., de Jongh, F.H. (2019) Processing transcutaneous electromyography measurements of respiratory muscles, a review of analysis techniques. Journal of Electromyography and Kinesiology, 1(48), 176-186
|
|
Vigotsky, A.D., Halperin, I., Lehman, G.J., Trajano, G.S., Vieira, T.M. (2018) Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Frontiers in Physiology, 8(8), 985
|
|
Viitasalo, J.H.T., Komi, P.V. (1977) Signal characteristics of EMG during fatigue. European Journal of Applied Physiology and Occupational Physiology, 37(2), 111-121
|
|
|
|