- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:11
- full-text downloads in 30 days:8
|
|
2020, vol. 47, iss. 2, pp. 159-168
|
Influence of different chemical agents and storage conditions on the microbiological content of industrial hemp (Cannabis sativa L.) seeds
Uticaj različitih hemijskih sredstava i uslova skladištenja na mikrobiološki profil semena industrijske konoplje (Cannabis sativa L.)
aInstitute for Food Technology, Novi Sad, Serbia bUniversity of Novi Sad, Faculty of Technology, Serbia cInstitute of Field and Vegetable Crops, Novi Sad, Serbia
email: natasa.djeric@fins.uns.ac.rs
Project: Ministry of Education, Science and Technological Development, Republic of Serbia (Institution: Institute for Food Technology, Novi Sad) (MESTD - 451-03-68/2020-14/200222) Ministry of Education, Science and Technological Development, Republic of Serbia (Institution: Institute of Field and Vegetable Crops, Novi Sad) (MESTD - 451-03-68/2020-14/200032)
Abstract
This study aimed to test different chemical agents to obtain microbiologically safe industrial hemp seeds that could be used for further food processing (with the reduced total number of microorganisms, total number of moulds and yeasts, and total number of Enterobacteriaceae). In order to obtain seeds applicable for food consumption, optimal storage temperature conditions (room temperature, refrigerator, freezer), method of seed packaging (vacuum/without vacuum), and the application of various chemical treatments (ethanol, sodium hydrogen carbonate, sodium hypochlorite) were tested on the certified industrial hemp seeds, produced in two consecutive years. Optimal storage conditions differed for different microorganisms, and the most optimal storage was at room temperature, for seeds produced in 2018, in the treatment to reduce the total number of Enterobacteriaceae and the total number of microorganisms. When storing seeds from 2018 in order to reduce the number of yeasts and moulds, a slightly lower number was spotted when seeds were stored in a vacuum-sealed bag, at the refrigerator/freezer temperature. For hemp seeds produced in 2019, the most optimal storage conditions were at the refrigerator (for reduction of the total number of Enterobacteriaceae) and freezer temperature (for reduction of the total number of microorganisms). For the reduction of the total number of moulds and yeasts, optimal conditions were at room temperature. Ethanol (75%, v/v) was the most effective disinfectant among the tested chemicals regardless of the initial number of microorganisms, with log reduction of 3.2 (for the total number of Enterobacteriaceae), 2.9 log (for the total number of microorganisms), and total reduction of the total number of yeasts and moulds after 10 minutes, for the seeds harvested in 2019, which were far more contaminated than the seeds harvested in 2018. Considering the price of the disinfection method with ethanol, sodium hypochlorite may be a better solution for the reduction of the number of microbiota on the seeds.
Sažetak
Cilj ovog istraživanja bio je ispitivanje različitih hemijskih sredstava za dobijanje mikrobiološki bezbednog semena industrijske konoplje, koje bi se moglo koristiti za dalju preradu u hranu (sa smanjenim ukupnim brojem mikroorganizama, ukupnim brojem kvasaca i plesni, i ukupnim brojem enterobakterija). Da bi se dobilo seme primenljivo za ishranu, optimalni temperaturni uslovi skladištenja (sobna temperatura, frižider, zamrzivač), način pakovanja semena (vakuum/bez vakuuma) i primena različitih hemijskih tretmana (etanol, natrijum hidrogen karbonat, natrijum hipohlorit) su testirani na sertifikovanom semenu industrijske konoplje, proizvedenom u dve uzastopne godine. Optimalni uslovi skladištenja su se razlikovali za različite mikroorganizme, a najoptimalnije skladištenje je bilo na sobnoj temperaturi, za seme iz 2018. godine, a u cilju smanjenja broja enterobakterija i ukupnog broja mikroorganizama. Pri skladištenju semena iz 2018. godine u cilju smanjenja broja plesni i kvasaca primećen je nešto manji broj datih mikroorganizama kada je seme čuvano u vakuumski zatvorenoj vrećici, na temperaturi frižidera/zamrzivača. Za seme konoplje iz 2019. godine najoptimalniji uslovi skladištenja su bili na temperaturi frižidera (za redukciju broja enterobakterija) i u zamrzivaču (za redukciju ukupnog broja mikroorganizama). Za smanjenje ukupnog broja plesni i kvasaca, optimalni uslovi su bili na sobnoj temperaturi. Etanol (75%, v/v) je bio najefikasnije sredstvo za dezinfekciju među ispitivanim hemijskim sredstvima, bez obzira na početni broj mikroorganizama, sa log smanjenjem od 3,2 (za ukupan broj enterobakterija), 2,9 log (za ukupan broj mikroorganizama) i ukupnim smanjenjem broja kvasaca i plesni nakon 10 minuta delovanja, za seme proizvedeno 2019. godine, koje je bilo mnogo više kontaminirano u odnosu na seme iz 2018. godine. Uzimajući u obzir cenu metoda dezinfekcije etanolom, natrijum hipohlorit može biti bolje rešenje za smanjenje broja mikrobiota na semenu.
|
|
|
References
|
|
*** (2013) Pravilnik o uslovima za gajenje konoplje. Službeni glasnik RS, 64
|
|
*** (2011) Horizontal method for the enumeration of yeasts and moulds: Colony count technique in products with water activity less than or equal to 0.95. Microbiology of food and animal feeding stuffs. Geneva: International Organization for Standardization, SRPS ISO. 21527-2:2011
|
|
*** (2014) Horizontal method for the enumeration of microorganisms -Part 1: Colony count at 30 °C by the pour plate technique. Microbiology of the food chain. Geneva: International Organization for Standardization, SRPS EN ISO. 4833-1:2014
|
|
*** (2017) Horizontal method for the detection and enumeration of Enterobacteriaceae -Part 2: Colony-count technique. Microbiology of the food chain. Geneva: International Organization for Standardization, SRPS EN ISO 21528-2:2017
|
|
*** (2017) Preparation of test samples, initial suspension and decimal dilutions for microbiological examination -Part 1: General rules for the preparation of the initial suspension and decimal dilutions. Microbiology of the food chain. Geneva: International Organization for Standardization, SRPS EN ISO 6887-1:2017
|
|
Afolabi, Q.O., Kareem, K.T. (2018) Antifungal activities of Carica papaya and sodium bicarbonate against Soybean fungi. International Journal of Biological and Chemical Sciences, 12(5): 2085-2092
|
|
Al-Amodi, M.O. (2016) Fungi associated with seeds of Ashford variety of groundnut grown in Yemen and its disinfection in vitro using sodium hypochlorite. Journal of Global Biosciences, 5(1): 3414-3422
|
|
Aliyu, T.H. (2018) The effect of Sodium Hypochlorite and Ethanol as seed sterilants on cowpea infected with Cowpea Mottle Virus. Nigerian Journal of Pure and Applied Sciences, 31(1): 3122-3127
|
|
Bradford, K.J., Dahal, P., van Asbrouck, J., Kunusoth, K., Bello, P., Thompson, J., Wu, F. (2018) The dry chain: Reducing postharvest losses and improving food safety in humid climates. Trends in Food Science & Technology, 71: 84-93
|
|
Brar, P.K., Danyluk, M.D. (2018) Nuts and grains: Microbiology and preharvest contamination risks. Microbiology Spectrum, 6(2)
|
3
|
Callaway, J.C. (2004) Hempseed as a nutritional resource: An overview. Euphytica, 140(1-2): 65-72
|
|
Curran, D.M., Montville, T.J. (1989) Bicarbonate inhibition of Saccharomyces cerevisiae and Hansenula wingei growth in apple juice. International Journal of Food Microbiology, 8(1): 1-9
|
|
Frassinetti, S., Gabriele, M., Moccia, E., Longo, V., di Gioia, D. (2020) Antimicrobial and antibiofilm activity of Cannabis sativa L. seeds extract against Staphylococcus aureus and growth effects on probiotic Lactobacillus spp. LWT, 124: 109149
|
|
Fukuzaki, S. (2006) Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Science, 11(4): 147-157
|
|
Kareem, K.T., Afolabi, Q.O., Shorinmade, A.Y., Akinbode, O.A. (2018) Management of seed-borne fungi in cowpea using leaf extracts and sodium bicarbonate. Journal of Applied Sciences and Environmental Management, 22(4): 565-570
|
|
Laca, A., Mousia, Z., Dí, A.M., Webb, C., Pandiella, S.S. (2006) Distribution of microbial contamination within cereal grains. Journal of Food Engineering, 72(4): 332-338
|
|
Mamun, A.M.A. (2018) Safe storage guidelines for industrial hemp (Cannabis sativa) seeds. Winnipeg, Canada: University of Manitoba, MSc thesis
|
|
Mckernan, K., Spangler, J., Helbert, Y., Lynch, R.C., Devitt-Lee, A., Zhang, L., Orphe, W., Warner, J., Foss, T., Hudalla, C.J., Silva, M. (2016) Metagenomic analysis of medicinal Cannabis samples: Pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests. F1000Research, 5: 2471
|
|
Mcpartland, J.M., Hillig, K.W. (2004) Cannabis clinic Fusarium Wilt. Journal of Industrial Hemp, 9(2): 67-77
|
|
Mcpartland, J.M., Mckernan, K.J. (2017) Contaminants of concern in cannabis: microbes, heavy metals and pesticides. in: Chandra S., Lata H., ElSohly M. [ed.] Cannabis sativa L. - Botany and Biotechnology, Cham: Springer, 457-474
|
|
Montoya, Z., Conroy, M., Vanden, H.B.D., Pauli, C.S., Park, S.H. (2020) Cannabis contaminants limit pharmacological use of cannabidiol. Frontiers in Pharmacology, 11: 1439
|
|
Oyebanji, O.B., Nweke, O., Odebunmi, O., Galadima, N.B., Idris, M.S., Nnodi, U.N., Afolabi, A.S., Ogbadu, G.H. (2009) Simple, effective and economical explant-surface sterilization protocol for cowpea, rice and sorghum seeds. African Journal of Biotechnology, 8(20): 5395-5399
|
|
Plavšić, D.V., Škrinjar, M.M., Psodorov, Đ.B., Šarić, L.Ć., Psodorov, D.Đ., Varga, A.O., Mandić, A.I. (2017) Mycopopulations of grain and flour of wheat, corn and buckwheat. Food and Feed Research, vol. 44, br. 1, str. 39-45
|
|
Singh, J., Paroha, S., Mishra, R.P. (2017) Factors affecting oilseed quality during storage with special reference to soybean (Glycine max) and Niger (Guizotia abyssinica) seeds. International Journal of Current Microbiology and Applied Sciences, 6(10): 2215-2226
|
|
Small, E., Beckstead, H.D. (1973) Common cannabinoid phenotypes in 350 stocks of Cannabis. Lloydia, 36(2): 144-165
|
|
Teh, S.S., Birch, J. (2013) Physicochemical and quality characteristics of cold-pressed hemp, flax and canola seed oils. Journal of Food Composition and Analysis, 30(1): 26-31
|
|
Winston, M.E., Hampton-Marcell, J., Zarraonaindia, I., Owens, S.M., Moreau, C.S., Gilbert, J.A., Hartsel, J., Kennedy, S.J., Gibbons, S.M. (2014) Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One, 9(9): e107415
|
|
Yang, Y., Meier, F., Ann, L.J., Yuan, W., Lee, P.S.V., Chung, H.J., Yuk, H.G. (2013) Overview of recent events in the microbiological safety of sprouts and new intervention technologies. Comprehensive Reviews in Food Science and Food Safety, 12(3): 265-280
|
|
Žeželj, M. (1995) Tehnologija žita i brašna. Novi Sad: Univerzitet u Novom Sadu, Tehnološki fakultet
|
|
|
|