Akcije

Scientific Publications of the State University of Novi Pazar Series A: Applied Mathematics, Informatics and mechanics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:17

Sadržaj

članak: 3 od 6  
Back povratak na rezultate
Second Zagreb index of trees with fixed diameter
(naslov ne postoji na srpskom)
Džavni univerzitet u Novom Pazaru, Departman za matematičke nauke
Ključne reči: second Zagreb index; diameter; trees
Sažetak
(ne postoji na srpskom)
Let G be a simple graph with vertex set V = V(G) = {v1, v2,..., vn} and edge set E = E(G). For vi ∈ V(G), by di = di(G) we denote the degree (number of neighbors) of the vertex vi. The second Zagreb index is defined as M2(G) = ∑ vivj∈E(G) didj. In this paper, we study the minimal and maximal second Zagreb index of trees with fixed diameter.
Reference
Berge, C. (1985) Graphs. Amsterdam, North-Holland
Borovićanin, B., Das, K.C., Furtula, B., Gutman, I. (2017) Zagreb indices: Bounds and extremal graphs. u: Gutman I., Furtula B., Das K.C., Milovanović I.Ž., Milovanović E.I. [ur.] Bounds in Chemical Graph Theory: Basics, Kragujevac: Univ. Kragujevac, pp. 67-153
Borovićanin, B., Aleksić-Lampert, T. (2015) On the maximum and minimum Zagreb indices of trees with a given number of vertices of maximum degree. MATCH Commun. Math. Comput. Chem, 74, 81-96
Borovićanin, B. (2015) On the extremal Zagreb indices of trees with given number of segments or given number of branching vertices. MATCH Commun. Math. Comput. Chem, 74, 57-79
Das, K.Ch., Kexiang, X., Gutman, I. (2013) On Zagreb and Harary indices. MATCH Communications in Mathematical and in Computer Chemistry, vol. 70, br. 1, str. 301-314
Feng, L., Lan, Y., Liu, W., Wang, X. (2016) Minimal Harary index of graphs with small parameters. MATCH Commun. Math. Comput. Chem, 76: 23-42
Gutman, I., Trinajstić, N. (1972) Graph theory and molecular orbitals: Total ph-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4): 535-538
Gutman, I., Ruščić, B., Trinajstić, N., Wilcox, C.F. (1975) Graph theory and molecular orbitals: XII: Acyclic polyenes. Journal of Chemical Physics, 62(9): 3399-3405
Gutman, I. (2003) Graphs with smallest sum of squares of vertex degrees. Kragujevac Journal of Mathematics, br. 25, str. 51-54
Gutman, I. (2014) On the origin of two degree-based topological indices. Bulletin: Classe des sciences mathématiques et natturalles - Sciences mathématiques, vol. 146, br. 39, str. 39-52
Liu, B., Gutman, I. (2006) Upper bounds for Zagreb indices of connected graphs. MATCH Communications in Mathematical and in Computer Chemistry, vol. 55, br. 2, str. 439-446
Liu, H., Pan, X.F. (2008) On the Wiener index of trees with fixed diameter. MATCH Communications in Mathematical and in Computer Chemistry, vol. 60, br. 1, str. 85-94
Sun, Q., Ikica, B., Škrekovski, R., Vukašinović, V. (2019) Graphs with a given diameter that maximise the Wiener index. Applied Mathematics and Computation, 356: 438-448
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/SPSUNP2001021Z
primljen: 25.01.2020.
prihvaćen: 26.03.2020.
objavljen u SCIndeksu: 26.02.2021.

Povezani članci

Sci Pub Univ Novi Pazar Ser A (2017)
Remark on lower bound for forgotten topological index
Milovanović E.I., i dr.

Sci Pub Univ Novi Pazar Ser A (2020)
Some remarks on general sum-connectivity coindex
Matejić M.M., i dr.

Kragujevac J Mathematics (2011)
On the upper bounds for the first Zagreb index
Ilić Aleksandar, i dr.

prikaži sve [7]