|
Reference
|
|
*** (2012) Sensory analysis: General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors: ISO 8586. Geneva: International Organization for Standardization
|
|
*** (2014) Methodology: Guidelines for monitoring the performance of a quantitative sensory panel: ISO 11132. Geneva: International Organization for Standardization
|
|
*** (2007) Sensory analysis: General guidance for the design of test rooms: Amendment 1: ISO 8589. Geneva: International Organization for Standardization
|
|
*** (1991) United States Standards for grades of fresh tomatoes. United States Department of Agriculture-Agricultural Marketing Service
|
2
|
AOAC International (2000) Official methods of analysis. Arlington: Association of Official Analytical Chemists, 17th ed
|
|
Arias, R., Lee, T.C., Logendra, L., Janes, H. (2000) Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. Journal of Agricultural and Food Chemistry, 48: 1697-1702
|
|
Bahramparvar, M., Salehi, F., Razavi, S.M. (2014) Predicting total acceptance of ice cream using artificial neural network. Journal of Food Processing and Preservation, 38(3): 1080-1088
|
1
|
Baldwin, E.A., Scott, J.W., Shewmaker, C.K., Schuch, W. (2000) Flavour trivia and tomato aroma: Biochemistry and possible mechanisms for control of important aroma components. HortScience, 35: 1013-1021
|
4
|
Basheer, I.A., Hajmeer, M. (2000) Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1): 3-31
|
1
|
Batu, A. (2004) Determination of acceptable firmness and colour values of tomatoes. Journal of Food Engineering, 61(3): 471-475
|
|
Cancilla, J.C., Wang, S.C., Díaz-Rodríguez, P., Matute, G., Cancilla, J.D., Flynn, D., Torrecilla, J.S. (2014) Linking chemical parameters to sensory panel results through neural networks to distinguish olive oil quality. Journal of Agricultural and Food Chemistry, 62(44): 10661-10665
|
1
|
Canene-Adams, K., Campbell, J.K., Zaripheh, S., Jeffery, E.H., Erdman, J.W. (2005) The Tomato As a Functional Food. Journal of Nutrition, 135(5): 1226-1230
|
|
Carbonell, L., Izquierdo, L., Carbonell, I., Costell, E. (2008) Segmentation of food consumers according to their correlations with sensory attributes projected on preference spaces. Food Quality and Preference, 19: 71-78
|
|
Corollaro, M.L., Endrizzi, I., Bertolini, A., Aprea, E., Demattè, M.L., Costa, F., Biasioli, F., Gasperi, F. (2013) Sensory profiling of apple: Methodological aspects. Postharvest Biology and Technology, 77: 111-120
|
|
Geeson, J.D., Browne, K.M., Maddison, K., Shepherd, J., Guarald, F. (1985) Modified atmosphere packaging to extend the shelf life of tomatoes. Journal of Food Technology, 20: 339-349
|
3
|
Hu, X., Weng, Q. (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sensing of Environment, 113(10): 2089-2102
|
1
|
Kaiser, H.F., Rice, J. (1974) Little Jiffy, Mark IV. Educational and Psychological Measurement, 34(1): 111-117
|
|
Kyriacou, M.C., Rouphael, Y. (2018) Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234: 463-469
|
1
|
Lenucci, M.S., Cadinu, D., Taurino, M., Piro, G., Dalessandro, G. (2006) Antioxidant Composition in Cherry and High-Pigment Tomato Cultivars. Journal of Agricultural and Food Chemistry, 54(7): 2606-2613
|
2
|
Maul, F., Sargent, S.A., Sims, C.A., Baldwin, E.A., Balaban, M.O., Huber, D.J. (2000) Tomato Flavor and Aroma Quality as Affected by Storage Temperature. Journal of Food Science, 65(7): 1228-1237
|
|
Oraguzie, N., Alspach, P., Volz, R., Whitworth, C., Ranatunga, C., Weskett, R., Harker, R. (2009) Postharvest assessment of fruit quality parameters in apple using both instruments and an expert panel. Postharvest Biology and Technology, 52: 279-287
|
6
|
Otto, M. (1999) Chemometrics statistics and computer application in analytical chemistry. Weinheim: Wiley-VCH
|
|
Pezo, L.L., Ćurčić, B.L., Filipović, V.S., Nićetin, M.R., Koprivica, G.B., Mišljenović, N.M., Lević, L.B. (2013) Artificial neural network model of pork meat cubes osmotic dehydration. Hemijska industrija, vol. 67, br. 3, str. 465-475
|
|
Pinela, J., Barros, L., Carvalho, A.M., Ferreira, I.C. (2012) Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in North Eastern Portugal homegardens. Food and Chemical Toxicology, 50: 829-834
|
|
Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E.M., Silva, C.L.M. (2013) Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. 'Zinac') during storage. Journal of Food Engineering, 114(3): 338-345
|
|
Rouphael, Y., Kyriacou, M.C., Petropoulos, S.A., de Pascale, S., Colla, G. (2018) Improving vegetable quality in controlled environments. Scientia Horticulturae, 234: 275-289
|
|
Ruiz, J.J., Alonso, A., García-Martínez, S., Valero, M., Blasco, P., Ruiz-Bevia, F. (2005) Quantitative analysis of flavour volatiles detects differences among closely related traditional cultivars of tomato. Journal of the Science of Food and Agriculture, 85: 54-60
|
|
Sabio, E., Lozano, M., Montero, D.E.V., Mendes, R.L., Pereira, A.P., Palavra, A.F., Coelho, J.A. (2003) Lycopene and b-carotene extraction from tomato processing waste using supercritical CO 2. Industrial & Engineering Chemistry Research, 42: 6641-6646
|
|
Singh, R.R.B., Ruhil, A.P., Jain, D.K., Patel, A.A., Patil, G.R. (2009) Prediction of sensory quality of UHT milk: A comparison of kinetic and neural network approaches. Journal of Food Engineering, 92(2): 146-151
|
|
Slimestad, R., Verheul, M. (2009) Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. Journal of the Science of Food and Agriculture, 89: 1255-1270
|
|
Turan, D., Capanoglu, E., Altay, F. (2015) Investigating the effect of roasting on functional properties of defatted hazelnut flour by response surface methodology: RSM. LWT - Food Science and Technology, 63: 758-765
|
|
Zaborowicz, M., Boniecki, P., Koszela, K., Przybył, J., Mazur, R., Kujawa, S., Pilarski, K. (2013) Use of artificial neural networks in the identification and classification of tomatoes. u: Proceedings of the Fifth International Conference on Digital Image Processing (ICDIP 2013), Beijing, 8878: 88782-88782
|
|
|
|