Akcije

Bulletin of Natural Sciences Research
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 7 od 9  
Back povratak na rezultate
2021, vol. 11, br. 1, str. 38-43
Curves on ruled surfaces under infinitesimal bending
(naslov ne postoji na srpskom)
aUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet
bUniverzitet u Nišu, Prirodno-matematički fakultet

e-adresamarija.najdanovic@pr.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet) (MPNTR - 451-03-68/2020-14/200123)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Nišu, Prirodno-matematički fakultet) (MPNTR - 451-03-68/2020-14/200124)

Sažetak
(ne postoji na srpskom)
Infinitesimal bending of curves lying with a given precision on ruled surfaces in 3-dimensional Euclidean space is studied. In particular, the bending of curves on the cylinder, the hyperbolic paraboloid and the helicoid are considered and appropriate bending fields are found. Some examples are graphically presented.
Reference
Aleksandrov, A.D. (1991) O beskonechno malyh izgibaniyah neregulyarnyh poverhnostei. Matem. sbornik, 1(43): 307-321
Alexandrov, V. (2010) New Manifestations of the Darboux's Rotation and Translation Fields of a Surface. New Zealand Journal of Mathematics, 40: 59-65
Belova, O., Mikeš, J., Sherkuziyev, M. (2021) An Analytical Inflexibility of Surfaces Attached Along a Curve to a Surface Regarding a Point and Plane. Results Math, 76(56)
Efimov, N. (1948) Kachestvennye voprosy teorii deformacii poverhnostei. UMN, 3(2): 47-158
Gözütok, U., Çoban, H.A., Sağiroğlu, Y. (2020) Ruled Surfaces Obtained by Bending of Curves. Turk J Math, 44(1): 300-306
Hinterleitner, I., Mikeš, J., Stránská, J. (2008) Infinitesimal F-planar Transformations. Russian Mathematics, 52(4): 13-18
Ivanova-Karatopraklieva, I., Sabitov, I.K. (1995) Bending of surfaces: Part II. Journal of Mathematical Sciences, 74(3): 997-1043
Kauffman, L.H., Velimirović, L.S., Najdanović, M.S., Rančić, S.R. (2019) Infinitesimal Bending of Knots and Energy Change. Journal of Knot Theory and Its Ramifications, 28(11): 1940009-1940009
Kon-Fossen, S.E. (1959) Nekotorye voprosy differ. geometrii v celom. Moskva: Fizmatgiz
Li, Y., Pei, D. (2016) Evolutes of Dual Spherical Curves for Ruled Surfaces. Mathematical Methods in the Applied Sciences, 39(11): 3005-3015
Li, Y., Wang, Z., Zhao, T. (2021) Geometric Algebra of Singular Ruled Surfaces. Advances in Applied Clifford Algebras, 31(2): 1-19
Maksimović, M., Velimirović, Lj., Najdanović, M. (2021) Infinitesimal Bending of DNA Helices. Turk J Math, 45: 520-528
Najdanović, M. (2015) Infinitesimal Bending Influence on the Willmore Energy of Curves. Filomat, 29(10): 2411-2419
Najdanović, M.S., Rančić, S.R., Kauffman, L.H., Velimirović, Lj.S. (2019) The Total Curvature of Knots Under Second-order Infinitesimal Bending. Journal of Knot Theory and Its Ramifications, 28(1): 1950005-1950005
Najdanović, M.S., Velimirović, Lj.S. (2017) On the Willmore Energy of Curves Under Second Order Infinitesimal Bending. Miskolc Mathematical Notes, 17(2): 979-987
Najdanović, M., Velimirović, L. (2018) Infinitesimal bending of curves on the ruled surfaces. University Thought - Publication in Natural Sciences, vol. 8, br. 1, str. 46-51
Rančić, S., Najdanović, M., Velimirović, Lj. (2019) Total Normalcy of Knots. Filomat, 33(4): 1259-1266
Rančić, S.R., Velimirović, L.S., Zlatanović, M.Lj. (2009) Curvebend graphical tool for presentation of infinitesimal bending of curves. Filomat, vol. 23, br. 2, str. 108-116
Rýparová, L., Mikes, J. (2019) Infinitesimal Rotary Transformation. Filomat, 33(4): 1153-1157
Vekua, I. (1959) Obobschennye analiticheskie funkcii. Moskva
Velimirović, L. (2001) Infinitesimal Bending of Curves. Matematicki bilten Skopje, Makedonija, 25(51): 25-36
Velimirović, L.S. (2001) Change of geometric magnitudes under infinitesimal bending. Facta universitatis - series: Mechanics, Automatic Control and Robotics, vol. 3, br. 11, str. 135-148
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/bnsr11-32015
objavljen u SCIndeksu: 30.07.2021.
metod recenzije: dvostruko anoniman

Povezani članci

Univ thought Publ nat sci (2018)
Infinitesimal bending of curves on the ruled surfaces
Najdanović Marija, i dr.

FU: Mathem&Informatics (2013)
Curvature based functions variations
Cvetković Milica D.

FU: Mech Aut Cont&Robot (2001)
Promena geometrijskih veličina pri beskonačno malom savijanju
Velimirović Ljubica S.