- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:9
- full-text downloads in 30 days:4
|
|
|
Insulation stresses of power equipment exposed to non-standard overvoltage waveforms
Naprezanja izolacije elektroenergetske opreme pri nestandardnim talasnim oblicima prenapona
Abstract
During its operation, electrical equipment is constantly exposed to overvoltages of various waveforms, such as lightning discharges, switching operations, faults, etc. Therefore, adequate selection of overvoltage protection and equipment insulation withstand voltages are key factors in increasing system reliability. In general, insulation coordination is carried out by analyzing the insulation behavior for standard impulse and switching overvoltage waveforms. However, overvoltages that occur in operating conditions can significantly deviate from the standard waveforms of insulation withstand voltages, in terms of the front time, the duration of the wave, the existence of highfrequency components as result of reflections in the facility and other factors. This paper presents possible methods of assessing the behavior of equipment insulation for real voltage waves to which the insulation is exposed during exploitation and which deviate from standard waveforms, by analysis in the frequency domain. As there are different components in the overvoltage signal at different frequencies, which a different energy, the main goal of this paper is to analyze the insulation characteristics of a specific transformer from the point of view of the energy spectral density of the voltage wave that occurs at its terminals when an atmospheric discharge occurs. The analysis is based on the determination of the safety margin on the entire frequency spectrum of the overvoltage wave, that is, on the calculation of the so-called FDSF (Frequency Domain Severity Factor). The calculation results show that although the overvoltage amplitude is lower than the withstand voltage of the transformer insulation with an appropriate safety margin (the condition of the classic approach to insulation coordination is satisfied), the spectrum analysis of the voltage wave in the frequency domain shows that the insulation may still be compromised.
Sažetak
Elektroenergetska oprema je tokom svog rada stalno izložena prenaponima različitog porekla, kao što su atmosferska pražnjenja, sklopne operacije, kvarovi itd. Zbog toga su adekvatan izbor prenaponske zaštite i podnosivih napona izolacije opreme ključni faktori u povećanju pouzdanosti sistema. Generalno, koordinacija izolacije se sprovodi analizom ponašanja izolacije za standardne talasne oblike udarnog i sklopnog prenapona. MeĎutim, prenapni koji se javljaju u pogonskim uslovima mogu značajno odstupati od standardnih talasnih oblika podnosivih napona izolacije, u pogledu vremena čela naponskog talasa, trajanja talasa, postojanja visokofrekventnih komponenti usled pojave refleksija u postrojenju i drugih faktora. U ovom radu su predstavljene moguće metode procene ponašanja izolacije opreme za realne naponske talase kojima je izolacija izložena tokom eksploatacije a koji odstupaju od standardnih talasnih oblika, analizom u frekventnom domenu. Kako u signalu prenapona postoje različite komponente na različitim frekvencijama, od kojih svaka ima različitu energiju, osnovni cilj ovog rada je analiza karakteristika izolacije jednog konkretnog transformatora sa stanovišta energetske spektralne gustine naponskog talasa koji se javlja na njegovim priključcima pri pojavi atmosferskog pražnjenja. Analiza je bazirana na odreĎivanju sigurnosne margine na celom frekventnom spektru prenaponskog talasa, odnosno na proračunu takozvanog FDSF (Frequency Domain Severity Factor). Rezultati proračuna pokazuju da iako je amplituda prenapona niža od podnosivog napona izolacije transformatora uz odgovarajuću sigurnosnu marginu (zadovoljen uslov klasičnog pristupa koordinaciji izolacije), analiza spektra naponskog talasa u frekventnom domenu pokazuje da ipak može doći do ugrožavanja izolacije.
|
|
|
References
|
|
*** (2018) Insulation co-ordination: Part 2: Application guidelines. IEC 60071-2
|
|
*** (2013) Insulation coodination for UHV AC systems. in: CIGRE technical brochure, No.542; CIGRE WG C4.306
|
|
*** (2014) Electrical transient interaction between transformers and the power system. in: CIGRE technical brochure, No.577; CIGRE JWG A2/C4.39
|
|
*** (2005) Interaction between transformers and the power system with focus in high frequency electromagnetic transients. Brazil: Cigre - Brazilian Working Group, JWG A2/C4-03
|
|
*** (2008) Insulation co-ordination related to internal insulation of gas insulated system in SF6 and N2/SF6 mixtures under AC conditions. in: CIGRE technical brochure, No. 360; CIGRE WG C4.302
|
|
*** (2011) Insulation co-ordination: Part 1: Definitions, principles and rules. IEC 60071-1
|
|
Balaji, S.P., Krithika, G., Usa, S. (2011) Prediction od v-t characteristics of transformer insulation. in: XVII International Symposium on High Voltage Engineering, Hannover, Germany, August 22-26
|
|
Darveniza, M., Vlastos, A.E. (1988) Generalised breakdown models and the integration method for predicting non-standard waveshape impulse strengths. in: Proceedings., Second International Conference on Properties and Applications of Dielectric Materials, 1: 284-287
|
|
Krithika, G., Usa, S. (2013) Volt-time characteristics of OIP under non-standard impulses. in: International Conference on Condition Assessment Techniques in Electrical Systems
|
|
Lopez-Fernandez, Xose M., Alvarez-Marino, C. (2010) Frequency domain severity factor (FDSF): Transient voltage performance: Transformer outside/inside. in: Advanced Research Workshop on Transformers, Spain
|
|
Malewski, R., Douville, J., Lavallee, L. (1988) Measurement of switching transients in 735 kV substations and assessment of their severity for transformer insulation. IEEE Transactions on Power Delivery, 3(4): 1380-1390; October
|
|
Massaro, U.R.R., Antunes, R. (2009) Electrical transient interaction between transformers and power system: Brazilian experience. in: International Conference on Power Systems Transients (IPST2009), Kyoto-Japan, June
|
|
Okabe, S., Takami, J. (2008) Evaluation of breakdown characteristics of oil-immersed transformers under non-standard lightning impulse waveforms: Method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 15(5): 1288-1296
|
|
Okabe, S., Koto, M., Kawashima, T., Ishikawa, T., Yamagiwa, T. (1999) Insulation characteristics of GIS for non-standard lightning surge waveforms: Part II: Gas gaps and spacer surface. in: Eleventh International Symposium on High Voltage Engineering, 3: 163-166
|
|
Okabe, S., Yuasa, S., Kaneko, S., Ueta, G. (2009) Evaluation of breakdown characteristics of gas insulated switchgears for non-standard lightning impulse waveforms: Method for converting non-standard lightning impulse waveforms into standard lightning impulse waveforms. IEEE Transactions on Dielectrics and Electrical Insulation, 16(1): 42-51
|
|
Sima, W., Lan, X., Yang, Q., Yuan, T. (2015) Statistical analysis on measured lightning overvoltage surges in a 110 kV air-insulated substation. IET Science, Measurement & Technology, 9(1): 28-36
|
|
Sun, P., Sima, W., Yang, M., Lan, X., Wu, J. (2015) Study on voltage-number characteristics of transformer insulation under transformer invading non-standard lightning impulses. IEEE Transactions on Dielectrics and Electrical Insulation, 22(6): 3582-3591; December
|
|
|
|