- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:4
|
|
2021, vol. 18, br. 2, str. 63-73
|
QTc interval i ishod lečenja bolesnika sa COVID-19
The QTc interval and treatment outcome of inpatients with COVID-19
Jovanović Jovan B.a, Janković Slobodan M.b  , Zdravković Natašac  , Davidović Gorana  , Veselinović Mirjanac, Čanović Petard  , Zarić Miland  , Sazdanović Majae  , Sazdanović Predragf, Pantić Katarinag, Čekerevac Ivang  , Folić Marko M.h  , Zečević-Ružić Dejanai, Baskić Dejanj  , Đorđević Natašad  , Milovanović Dragan R.b
aUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za internu medicinu + Klinički centar Kragujevac, Klinika za kardiologiju bUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za farmakologiju i toksikologiju + Klinički centar Kragujevac, Služba za kliničku farmakologiju cUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za internu medicinu + Klinički centar Kragujevac, Klinika za internu medicinu dUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za farmakologiju i toksikologiju eUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Patohistološka katedra fUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za anatomiju i sudsku medicinu + Ministry of Health of the Republic of Serbia, Belgrade gUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za internu medicinu + Klinički centar Kragujevac, Klinika za pulmologiju hKlinički centar Kragujevac, Služba za kliničku farmakologiju + Univerzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za farmakologiju i toksikologiju iKlinički centar Kragujevac, Klinika za kardiologiju + Klinički centar Kragujevac, Služba za kliničku farmakologiju jUniverzitet u Kragujevcu, Fakultet medicinskih nauka, Katedra za mikrobiologiju i imunologiju + Public Health Institute, Kragujevac
e-adresa: jovanovmejl1@gmail.com
Projekat: Farmakološka analiza efekata biološki aktivnih supstanci na izolovane glatke mišiće gastrointestinalnog i urogenitalnog trakta čoveka (MPNTR - 175007)
Sažetak
Cilj. Nakon početka pandemije COVID-19 izazvane virusom SARS-CoV-2, pao je ogroman pritisak na ceo zdravstveni sistem. Pošto za ovu bolest ne postoji adekvatan lek, pribeglo se nelicenciranoj upotrebi nekoliko lekova (azitromicin, hlorokin, hidroksihlorokin i dr.). Cilj ove studije je bio da se analizira dinamika QTc intervala i njegov odnos sa drugim faktorima koji mogu uticati na ishod kod pacijenata sa COVID-19. Metode. Studija je imala opservacioni dizajn slučaj-kontrola sa retrospektivnim prikupljanjem podataka iz medicinske dokumentacije odraslih pacijenata, sa RT-PCR potvrđenim COVID-19. Slučajevi (n=30) su bili bolesnici sa smrtnim ishodom, a kontrole (n=169) su bili preživeli. QTc interval je izračunat pri prijemu, tokom i nakon inicijalne primene lekova sa pretpostavljenom aktivnošću protiv SARS-CoV-2, uglavnom antimalarika. Primarne nezavisne varijable i varijable ishoda bile su produženje QTc intervala odnosno mortalitet od svih uzroka. Rezultati. Ispitivana populacija je uključivala 120 muškaraca (60,3%), prosečna starost pacijenata bila je 57,3+-15,8 godina (+-SD). Najčešća komorbidna oboljenja bila su hipertenzija (98 pacijenata), postojeće aritmije (32) i dijabetes melitus (29). Najčešće propisivani lekovi koji su mogli da produže QTc interval bili su azitromicin (69,8% pacijenata), hlorokin (50,3%) i hidroksihlorokin (42,7%). Ukupno 131 pacijent (65,8%) imao je povećanje QTc intervala >60 ms u odnosu na početnu liniju, od kojih je 5 imalo produženje QTc intervala >500 ms (2,5%). De novo ventrikularne tahiaritmije su registrovane kod 14 pacijenata (7%) a od njih, umrlo je 13 (92,8%). Prethodno postojeće aritmije (odnos šanse 9,30, 95% interval poverenja 2,91-29,73, p<0,001) i furosemid (8,94, 3,27-24,41, p<0,001) su nezavisno povezani sa mortalitetom ali ne i produženje QTc intervala (1,02, 0,22-4,67, p=0,974). Stopa smrtnosti iznosila je 15,1%, pošto je 30 pacijenata umrlo tokom hospitalizacije. Zaključak: Klinički značaj produženja QTc intervala izazvanog lekovima kod hospitalizovanih pacijenata sa COVID-19 treba prvenstveno razmotriti u kontekstu drugih rizika, posebno starije životne dobi, postojećih kardiovaskularnih poremećaja i velikih poremećaja elektrolita.
Abstract
Objective. After the beginning of the COVID-19 pandemic caused by the SARS-CoV -2 virus, enormous pressure fell on the entire health system. Since there is no adequate cure for this disease, "off-label" use of several drugs (azithromycin, chloroquine, hydroxychloroquine, etc.) was resorted to. The aim of this study was to analyse QTc interval dynamics and its relationship with other factors which could influence outcome in patients with COVID-19. Methods. Study has observational, case-control design with retrospective data collection from medical files of adult patients, with RT-PCR confirmed COVID-19. The cases (n=30) were subjects with fatal outcome and the controls (n=169) were the survivors. The QTc interval was calculated on admission, during and after initial drug treatments with presumed activity against SARS-CoV-2, mostly antimalarials. Primary independent and outcome variables were QTc interval prolongation and all-cause mortality, respectively. Results. Study population included 120 males (60.3%), the mean patients age was 57.3+-15.8 years (+-SD). The most common comorbid illnesses were hypertension (98 patients), pre-existing arrhythmias (32) and diabetes mellitus (29). The most frequently prescribed QTc prolonging drugs were azithromycin (69.8% of patients), chloroquine (50.3%) and hydroxychloroquine (42.7%). Total of 131 patients (65.8%) had QTc interval increase >60 ms from baseline, of whom 5 had QTc prolongation >500 ms (2.5%). De novo ventricular tachyarrhythmias were registered at 14 patients (7%) and 13 (92.8%) of them died. Pre-existing arrhythmias (odds ratio 9.30, 95% confidence interval 2.91-29.73, p<0.001) and furosemide (8.94, 3.27-24.41, p<0.001) were independently associated with mortality but QTc prolongation (>480 ms) did not (1.02, 0.22-4.67, p=0.974). Case fatality rate was 15.1%, as 30 patients died during hospitalization. Conclusion. Clinical importance of drug-induced QTc interval prolongation of hospitalized patients with COVID-19 should be considered primarily within the context of other risks, particularly older age, pre-existing cardiovascular disorders and major electrolyte disturbances.
|
|
|
Reference
|
|
*** (2005) Note for guidance on the clinical evaluation of QT/ QTc interval prolongation and proarrhythmic potential for nonantiarrhythmic drugs. London: European Medicines Agency, CHMP/ICH/2/04
|
3
|
Aćimović, J., Jandrić, L., Đakovic-Dević, J., Bojanić, J., Subotić, B., Radojčić, T., Rodić-Vukmir, N., Zeljković, B. (2020) Epidemiological characteristics of COVID-19 infection in the Republic of Srpska: A hundred days survey. Scripta Medica, vol. 51, br. 2, str. 74-80
|
|
Arshad, S., Kilgore, P., Chaudhry, Z.S., et al. (2020) Treatment with hydroxychloroquine, azithromycin, and combination inpatients hospitalized with COVID-19. Int J Infect Dis, 97: 396-403
|
|
Ayad, R.F., Assar, M.D., Simpson, L., Garner, J.B., Schussler, J.M. (2010) Causes and Management of Drug-Induced Long Qt Syndrome. Proc (Bayl Univ Med Cent), 23: 250-5
|
|
Bazett, H. (1920) An analysis of the time-relations of the electrocardiograms. Heart, 353-70
|
|
Bessiere, F., Roccia, H., Delinière, A., et al. (2020) Assessment of QT Intervals in a Case Series of Patients With Coronavirus Disease 2019 (COVID-19) Infection Treated With Hydroxychloroquine Alone or in Combination With Azithromycin in an Intensive Care Unit. JAMA Cardiology, 5: 1067-1069
|
|
Bimonte, S., Crispo, A., Amore, A., Celentano, E., Cuomo, A., Cascella, M. (2020) Potential Antiviral Drugs for SARS-Cov-2 Treatment: Preclinical Findings and Ongoing Clinical Research. In Vivo, 34: 1597-1602
|
|
Bleyzac, N., Goutelle, S., Bourguignon, L., Tod, M. (2020) Azithromycin for COVID-19: more than just an antimicrobial?. Clin Drug Investig, 40: 683-686
|
|
Borba, M.G.S., Val, F.F.A., Sampaio, V.S., Alexandre, M.A.A., Melo, G.C., Brito, M., et al. (2020) Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection. JAMA Network Open, 3: e208857
|
1
|
Brankovich, B.S., Frantzevich, L.P., Vitalievich, G.S., Ivanovich, V.S., Sergeevna, O.A., Anatolievna, F.M., Alekseevich, N.A., Sergeevna, B.S., Yurievna, M.A. (2020) Fundamental basis of COVID-19 pathogenesis. Serbian Journal of Experimental and Clinical Research, vol. 21, br. 2, str. 93-111
|
|
Browning, D.J. (2014) Pharmacology of chloroquine and hydroxychloroquine. u: Hydroxychloroquine and chloroquine retinopathy, New York: Springer, 35-6
|
|
Cavalcanti, A.B., Zampieri, F.G., Rosa, R.G., et al. (2020) Hydroxychloroquine with or without azithromycin in mild-tomoderate Covid-19. N Engl J Med, 383: 2041-52
|
1
|
Chinese Centre For Disease Control And Prevention (2020) Diagnosis and treatment. u: COVID-19 Prevention and control, Bejing, (http://www.chinacdc.cn/en/COVid19/202002/P020200310326343385431.pdf) (accessed on March 24th 2020)
|
|
Chorin, E., Dai, M., Shulman, E., et al. (2020) The QT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nature Medicine, 26: 808-809
|
1
|
COVID-19 Treatment Guidelines Panel (2020) Coronavirus disease 2019 (COVID-19) treatment guidelines. Bethesda: National Institutes of Health, https://www.covid19treatmentguidelines.nih.gov
|
|
Das, R.R., Jaiswal, N., Dev, N., Jaiswal, N., Naik, S.S., Sankar, J. (2014) Efficacy and Safety of Anti-malarial Drugs (Chloroquine and Hydroxy-Chloroquine) in Treatment of COVID-19 Infection: A Systematic Review and Meta-Analysis. Frontiers in Medicine, 7: 482
|
1
|
Devaux, C.A., Rolain, J.M., Colson, P., Raoult, D. (2020) New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. Int J Antimicrob Agents, 55: 105938
|
|
Drew, B.J., Ackerman, M.J., Funk, M., Gibler, W.B., Kligfield, P., Menon, V., et al. (2010) Prevention of torsade de pointes in hospital settings: A scientific statement from the American Heart Association and the American College of Cardiology Foundation. J Am Coll Cardiol, 55: 934-47
|
|
Fernandes, F.M., Silva, E.P., Martins, R.R., Oliveira, A.G. (2018) QTc interval prolongation in critically ill patients: Prevalence, risk factors and associated medications. PLoS One, 13: e0199028
|
|
Gautret, P., Lagier, J.C., Parola, P., Hoang, V.T., Meddeb, L., Mailhe, M., et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label nonrandomized clinical trial. Int J Antimicrob Agents, 56: 105949
|
|
Global Covid-19 Clinical Platform (2020) Rapid core case report form (CRF). Geneva: World Health Organization, WHO/2019-nCoV/Clinical_CRF/2020.4
|
|
Jankelson, L., Karam, G., Becker, M.L., Chinitz, L.A., Tsai, M.C. (2020) QT prolongation, torsades de pointes, and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: A systematic review. Heart Rhythm, 17: 1472-9
|
2
|
Janković, S.M. (2020) Antiviral therapy of COVID-19. Scripta Medica, vol. 51, br. 3, str. 131-133
|
|
Li, X., Xu, S., Yu, M., et al. (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. Journal of Allergy and Clinical Immunology, 146: 110-8
|
|
Lu, Q.B., Jiang, W.L., Zhang, X., et al. (2021) Comorbidities for fatal outcome among the COVID-19 patients: A hospital-based case-control study. Journal of Infection, 82: 159-198
|
|
Mehra, M.R., Desai, S.S., Ruschitzka, F., Patel, A.N. (2020) RETRACTED: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet, S0140-6736(20)31180-6
|
|
Mercuro, N.J., Yen, C.F., Shim, D.J., et al. (2020) Risk of QT Interval Prolongation Associated With Use of Hydroxychloroquine With or Without Concomitant Azithromycin Among Hospitalized Patients Testing Positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiology, 5: 1036-41
|
|
Mikami, T., Miyashita, H., Yamada, T., et al. (2021) Risk Factors for Mortality in Patients with COVID-19 in New York City. Journal of General Internal Medicine, 36: 17-26
|
|
Milovanović, D.R., Janković, S.M., Ružić-Zečević, D., Folić, M., Rosić, N., Jovanović, D., Baskić, D., Vojinović, R., Mijailović, Ž., Sazdanović, P. (2020) Treatment of coronavirus disease (COVID-19). Medicinski časopis, vol. 54, br. 1, str. 23-43
|
|
Molina, J.M., Delaugerre, C., Goff, L.J., et al. (2020) No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect, 50: 384
|
|
Perinel, S., Launay, M., Botelho-Nevers, E., et al. (2020) Towards Optimization of Hydroxychloroquine Dosing in Intensive Care Unit COVID-19 Patients. Clinical Infectious Diseases, 71: 2227-9
|
|
Poduri, R., Joshi, G., Jagadeesh, G. (2020) Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signalling, 74: 109721-109721
|
|
Ramireddy, A., Chugh, H., Reinier, K., et al. (2020) Experience With Hydroxychloroquine and Azithromycin in the Coronavirus Disease 2019 Pandemic: Implications for QT Interval Monitoring. Journal of the American Heart Association, 9: e017144
|
1
|
Recovery Collaborative Group, Horby, P., Lim, W.S., Emberson, J.R., et al. (2021) Dexamethasone in Hospitalized Patients with Covid-19. New England Journal of Medicine, 384: 693-704
|
|
Reeves, G. (2007) C-reactive protein. Aust Prescr, 30: 74-76
|
|
Saleh, M., Gabriels, J., Chang, D., et al. (2020) Effect of Chloroquine, Hydroxychloroquine, and Azithromycin on the Corrected QT Interval in Patients With SARS-CoV-2 Infection. Circulation: Arrhythmia and Electrophysiology, 13: e008662
|
|
Savić, N., Gojković-Bukarica, L. (2008) Long QT syndrome: Genetic implications and drug influence. Vojnosanitetski pregled, vol. 65, br. 4, str. 308-312
|
|
Sinkeler, F.S., Berger, F.A., Muntinga, H.J., Jansen, M.M.P.M. (2020) The risk of QTc-interval prolongation in COVID-19 patients treated with chloroquine. Netherlands Heart Journal, 28: 418-23
|
|
Tisdale, J.E., Jaynes, H.A., Kingery, J.R., et al. (2013) Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes, 6: 479-87
|
|
Tugwell, P., Haynes, B. (2006) Assessing claims of causation. u: Haynes RB, Sackett DL, Guyatt GH, Tugwell P [ur.] Clinical Epidemiology -how to do clinical practice research, Philadelphia: Lippincot Williams & Wilkins, 356-87, 3rd ed
|
|
Vandael, E., Vandenberk, B., Vandenberghe, J., Willems, R., Foulon, V. (2017) Risk factors for QTc-prolongation: systematic review of the evidence. International Journal of Clinical Pharmacy, 39: 16-25
|
2
|
Wang, M., Cao, R., Zhang, L., et al. (2020) Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 30: 269-71
|
|
World Health Organization (2020) Clinical management of COVID-19: Interim guidance. Geneva, 27 May, https://apps.who.int/iris/handle/10665/332196
|
|
Zhou, F., Yu, T., Du, R., et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395: 1054-62
|
|
|
|