- citati u SCIndeksu: [1]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:8
- preuzimanja u poslednjih 30 dana:2
|
|
2016, vol. 73, br. 10, str. 904-909
|
Osetljivost na antibiotike i proizvodnja β-laktamaza kod Bacillus cereus izolata iz stolice pacijenata, hrane i okoline
Antimicrobial susceptibility and β-lactamase production in Bacillus cereus isolates from stool of patients, food and environment samples
aVojnomedicinska akademija, Institut za mikrobiologiju, Beograd, Srbija + Univerzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd, Srbija bUniverzitet u Nišu, Medicinski fakultet, Srbija cUniverzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd, Srbija + Vojnomedicinska akademija, Institut za epidemiologiju, Beograd, Srbija dUniverzitet odbrane, Medicinski fakultet Vojnomedicinske akademije, Beograd, Srbija + Vojnomedicinska akademija, Institut za higijenu, Beograd, Srbija eUniverzitet u Beogradu, Medicinski fakultet, Institut za ortopedsko-hirurške bolesti 'Banjica', Srbija fInstitute of Public Health, Niš
e-adresa: dejsav@yubc.net
Sažetak
Uvod/Cilj. Bacillus cereus (B. cereus) koji se u organizam čoveka unosi uglavnom putem hrane, može izazvati dva tipa oboljenja: povraćanje usled prisustva emetičkog toksina i dijarealni sindrom, usled prisustva dijarejnih toksina. Moguće su i sistemske manifestacije. Teže forme bolesti zahtevaju lečenje antibioticima. Cilj ove studije bio je da se ispitata osetljivost na antibiotike i utvrdi proizvodnja β-laktamaza kod sojeva B. cereus izolovanih iz stolice ljudi, hrane i okoline. Metode. B.cereus je identifikovan primenom selektívne podloge, klasičnog biohemijskog testa i metodom lančane reakcije polimeraze (PCR) pomoću prajmera specifičnih za bal gen. Iz svake grupe analizirana je osetljivost na antibiotike kod 30 izolata, disk-difuzionom metodom. Proizvodnja β-laktamaza rađena je Cefinaza testom i duplom disk metodom. Rezultati. Kod svih sojeva identifikovanih kao B. cereus primenom biohemijskog testa, metodom PCR umnožen je fragment od 533 bp. Izolati iz sve tri grupe bili su osetljivi na imipenem, vankomicin i eritromicin. Na ciprofloksacin su bili osetljivi svi sojevi osim jednog iz okoline. Statistički značajna razlika između grupa utvrđena je za osetljivosti na tetraciklin i trimetoprim-sulfametoksazol. 28/30 (93,33%) uzoraka iz hrane i 25/30 (83,33%) uzoraka iz okoline bili su osetljivi na tetraciklin, dok je samo 10/30 (33,33%) uzoraka stolice bilo osetljivo. Nasuprot ovim rezultatima, visoka osetljivost na trimetoprim-sulfametoksazolutvrđena je kod uzoraka iz stolice i iznosila je 100%, dok je kod izolata iz hrane i okoline bila niža i iznosila je 63,33% i 70%. Svi izolati proizvodili su β-laktamaze. Zaključak. Izolati B. cereus iz sve tri grupe pokazali su visoku osetljivost na većinu testiranih antibiotika, osim na tetraciklin iz uzoraka poreklom iz stolice i na trimetoprim/sulfametoksazol iz uzoraka hrane i okoline. Produkcija β-laktamaza potvrđena je za sve izolate.
Abstract
Background/Aim. Bacillus cereus (B. cereus) usually ingested by food can cause two types of diseases: vomiting due to the presence of emetic toxin and diarrheal syndrome, due to the presence of diarrheal toxins. Systemic manifestations can also occur. The severe forms of disease demand antibiotic treatment. The aim of this study was to determine the differences in antibiotic susceptibility and β-lactamase activity of B. cereus isolates from stools of humans, food and environment. Methods. Identification of B. cereus was performed with selective medium, classical biochemical test and polymerase chain reaction (PCR) with primers specific for bal gene. Thirty isolates from each group were analysed for antibiotic susceptibility using the disk-diffusion assay. Production of β-lactamase was determined by cefinase test, and double-disc method. Results. All strains identified as B. cereus using classical biochemical test, yielded 533 bp fragment with PCR. Isolates from all the three groups were susceptible to imipenem, vancomycin, and erythromycin. All isolates were susceptible to ciprofloxacin but one from the environment. A statistically significant difference between the groups was confirmed to tetracycline and trimethoprim-sulphamethoxazole sensitivity. A total of 28/30 (93.33%) samples from the foods and 25/30 (83.33%) samples from environment were approved sensitive to tetracycline, while 10/30 (33.33%) isolates from stools were sensitive. Opposite to this result, high susceptibility to trimethoprim-sulphamethoxazole was shown in samples from stools (100%), while isolates from foods (63.33%) and from environment (70%) had low susceptibility. All samples produced β-lactamases. Conclusion. The strains of B. cereus from all the three groups showed high rate of sensitivity to most tested antibiotics, except to tetracycline in samples from human stool and to trimethoprim- sulphamethoxazole in samples from food and environment. The production of β-lactamases was confirmed in all the strains.
|
|
|
Reference
|
|
*** (2013) EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance. Växjô, Sweden: European Committee on Antimicrobial Susceptibility Testing, Version 1. O. 2013. December
|
|
*** (2004) Siluation of diarrhea disease. Bangok, Thailand: Ministry of Public Health-Department of Disease Control-Bureau of Epidemiology
|
|
Abdel-Shakour, E.H., Roushdy, M.M. (2010) Plasmid Profile and Protease Activity of β-lactams Resistant Termotolerant Soil Isolate B. cereus BC2 from the Bacillus cereus Group Species. Rep Opin, 2(8); 82-94
|
|
Agersø, Y., Jensen, L.B., Givskov, M., Roberts, M.C. (2002) The identification of a tetracycline resistance gene tet(M), on a Tn916-like transposon, in the Bacillus cereus group. FEMS microbiology letters, 214(2): 251-6
|
|
Al-Khatib, M.S., Khyami-Horani, H., Badran, E., Shehabi, A.A. (2007) Incidence and characterization of diarrheal enterotoxins of fecal Bacillus cereus isolates associated with diarrhea. Diagnostic Microbiology and Infectious Disease, 59(4): 383-387
|
|
Aslim, B. (2002) Determination of Some Properties of Bacillus Isolated from Soil. Turk J Biol, 26: 41-8
|
|
Banerjee, M., Nair, G.B., Ramamurthy, T. (2011) Phenotypic & genetic characterization of Bacillus cereus isolated from the acute diarrhoeal patients. Indian J Med Res, 133: 88-95
|
3
|
Chopra, I., Roberts, M. (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65(2): 232-60 ; second page, table of contents
|
|
Collins, C.H., Lyne, P.M., Grange, J.M. (2001) Estimating microbial numbers. u: Collins C.H., Lyne P.M. [ur.] Microbiological metods, London: Arnold
|
|
Dancer, S.J. (1999) Mopping up hospital infection. Journal of hospital infection, 43(2): 85-100
|
|
Das, S., Surendran, P.K., Thampuran, N.K. (2009) PCR-based detection of enterotoxigenic isolates of Bacillus cereus from tropical seafood. Indian journal of medical research, 129(3): 316-20
|
|
Ehling-Schulz, M., Guinebretiere, M., Monthán, A., Berge, O., Fricker, M., Svensson, B. (2006) Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS microbiology letters, 260(2): 232-40
|
|
Ghosh, R., Sharda, R., Chhabra, D., Sharma, V. (2003) Subclinical bacterial mastitis in cows of Malwa region of Madhya Pradesh. Indian Vet J, 69: 80(499-501
|
|
Ginsburg, A.S., Salazar, L.G., True, L.D., Disis, M.L. (2003) Fatal Bacillus cereus sepsis following resolving neutropenic enterocolitis during the treatment of acute leukemia. American journal of hematology, 72(3): 204-8
|
|
Hu, X., Swiecicka, I., Timmery, S., Mahillon, J. (2009) Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS microbiology ecology, 70(3): 344-55
|
|
Jääskeläinen, E. (2008) Assessment and contol of Bacillus cereus emetic toxin in food. Finland, Helsinki: Faculty of Agriculture and Forestry, University of Helsinki, dissertation
|
|
Jensen, G.B., Hansen, B.M., Eilenberg, J., Mahillon, J. (2003) The hidden lifestyles of Bacillus cereus and relatives. Environmental microbiology, 5(8): 631-40
|
|
Jensen, L.B., Baloda, S., Boye, M., Aarestrup, F.M. (2001) Antimicrobial resistance among Pseudomonas spp. and the Bacillus cereus group isolated from Danish agricultural soil. Environment International, 26(7-8): 581-587
|
|
Luna, V. A., King, D. S., Gulledge, J., Cannons, A. C., Amuso, P. T., Cattani, J. (2007) Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre(R) automated microbroth dilution and Etest(R) agar gradient diffusion methods. Journal of Antimicrobial Chemotherapy, 60(3): 555-567
|
|
Oladipo, I.C., Adejumobi, O.D. (2010) Incidence of Antibiotic Resistance in Some Bacterial Pathogens from Street Vended Food in Ogbomoso, Nigeria. Pakistan Journal of Nutrition, 9(11): 1061-1068
|
|
Ozcelik, B., Citak, S. (2009) Evaluation of antibiotic resistance of Bacillus cereus isolates in ice-cream samples sold in Ancara. Turk J Pharm Sci, 6(3); 231-8
|
|
Schlegelova, J., Brychta, J., Klimova, E., Napravnikova, E., Babak, V. (2003) The prevalence of and resistance to antimicrobial agents of Bacillus cereus isolates from foodstuffs. Vet Med Czech, 48(11); 331-8
|
|
Srinu, B., Vijaya, K.A., Kumar, E., Madhava, R. (2012) Antimicrobial resistance pattern of bacterial foodborne pathogens. J Chem Pharm Res, 4(7); 3734-6
|
1
|
Stenfors, A.L.P., Fagerlund, A., Granum, P.E. (2008) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS microbiology reviews, 32(4): 579-606
|
|
Tewari, A., Singh, S.P., Singh, R. (2012) Prevalence of multidrug resistant bacillus cereus in foods and human stool samples in and around Pantnagar, Uttrakhand. J Advan Vet Res, 2: 252-5
|
|
Torkar, K. G., Seme, K. (2009) Antimicrobial susceptibility, β-lactamase and enterotoxin production in Bacillus cereus isolates from clinical and food samples. Folia Microbiologica, 54(3): 233-238
|
|
Turnbull, P. C. B., Sirianni, N. M., LeBron, C. I., Samaan, M. N., Sutton, F. N., Reyes, A. E., Peruski, L. F. (2004) MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a Range of Clinical and Environmental Sources as Determined by the Etest. Journal of Clinical Microbiology, 42(8): 3626-3634
|
|
Weber, D.J., Saviteer, S.M., Rutala, W.A., Thomann, C.A. (1988) In vitro susceptibility of Bacillus spp. to selected antimicrobial agents. Antimicrobial agents and chemotherapy, 32(5): 642-5
|
|
Whong, C.M., Kwaga, J.K. (2007) Antibiograms of Bacillus cereus isolates from some Nigerian Foods. Nigerian Food Journal, 25(1)
|
|
Wong, H.C., Chang, M.H., Fan, J.Y. (1988) Incidence and characterization of Bacillus cereus isolates contaminating dairy products. Applied and environmental microbiology, 54(3): 699-702
|
|
Yea, C.L., Lee, C.L., Pan, T.M., Horng, C.B. (1994) Isolation of Bacillus cereus in the feces of healthy adults in Taipei City. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 27(3); 148-51
|
|
You, Y., Hilpert, M., Ward, M.J. (2013) Identification of Tet45, a tetracycline efflux pump, from a poultry-litter-exposed soil isolate and persistence of tet(45) in the soil. Journal of antimicrobial chemotherapy, 68(9): 1962-9
|
|
|
|