Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 9 od 23  
Back povratak na rezultate
2019, vol. 16, br. 3, str. 387-403
Optimal HOG cell to image ratio for robust multi-sensor face recognition systems
(naslov ne postoji na srpskom)
aVlatacom Institute of High Technologies, Belgrade
bUniverzitet u Beogradu, Elektrotehnički fakultet + Vlatacom Institute of High Technologies, Belgrade

e-adresamilos.pavlovic@vlatacom.com, branka.stojanovic@vlatacom.com, ranko.petrovic@vlatacom.com, snezana.puzovic@vlatacom.com, srdjan.stankovic@vlatacom.com
Ključne reči: Face recognition; Visible light imagery; Thermal imagery; Image scaling; Facial expression; HOG
Sažetak
(ne postoji na srpskom)
The main problem for modern visible light face recognition has been accurate identification under variable environmental conditions. Thermal infrared facial images utilization in face recognition systems can provide a solution for problems related to uncontrolled environmental conditions, especially to those caused by illumination limitations. This paper compares the results of the use of visible light and thermal infrared imagery for face recognition based on the HOG feature descriptor. In particular, the paper suggests an optimal HOG cell to image size ratio in order to improve recognition accuracy and reduce computational complexity. Performance statistics are presented on facial images with different facial expressions. The obtained results support the conclusion that recognition with thermal infrared images is more robust and that fusion of sensors should be included for improving recognition accuracy.
Reference
*** OTCBVS Benchmark Dataset Collection-Dataset 02: IRIS Thermal/Visible Face Database. Available at: http://vcipl-okstate.org/pbvs/bench/Data/02/download.html
Bebis, G., Gyaourova, A., Singh, S., Pavlidis, I. (2006) Face recognition by fusing thermal infrared and visible imagery. Image and Vision Computing, 24(7): 727-742
Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W. (2005) The Relation between the ROC Curve and the CMC. u: The IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05) (4th), Buffalo, USA, October, Proceedings of, 15-20
Chih-Wei, H., Chih-Jen, L. (2002) A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 13(2): 415-425
Choi, J., Hu, S., Young, S.S., Davis, L.S. (2012) Thermal to visible face recognition. u: The SPIE Digital Library, May, Proceedings of, 8371: 83711-83711
Dalal, N., Triggs, B. (2005) Histograms of Oriented Gradients for Human Detection. u: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR IEEE'05), San Diego, USA, June, Proceedings of, 1-8
Déniz, O., Bueno, G., Salido, J., de la Torre, F. (2011) Face recognition using Histograms of Oriented Gradients. Pattern Recognition Letters, 32(12): 1598-1603
Fung, G.M., Mangasarian, O.L. (2005) Multicategory Proximal Support Vector Machine Classifiers. Machine Learning, 59(1-2): 77-97
Guo, G., Li, S.Z., Chan, K. (2000) Face Recognition by Support Vector Machines. u: The IEEE International Conference on Automatic Face and Gesture Recognition (4th), Grenoble, France, March, Proceedings of, 196-201
Hand, D.J., Till, R.J. (2001) A Simple Generalisation of the Area Under the ROC Curve for Multiple Class Classification Problems. Machine Learning, Vol. 45, No. 2, November, pp. 171 - 186
Heisele, B., Ho, P., Poggio, T. (2001) Face recognition with support vector machines: Global versus component-based approach. u: The IEEE International Conference on Computer Vision (ICCV 2001) (8th), Vancouver, Canada, July, Proceedings of, 688-694
Kakkirala, K.R., Chalamala, S.R., Jami, S.K. (2017) Thermal Infrared Face Recognition: A Review. u: The UKSim-AMSS International Conference on Modelling & Simulation (UKSim) (19th), Cambridge, UK, April, Proceedings of, 55-60
Keerthi, S., Lin, C. (2003) Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel. Neural Computation, 15(7): 1667-1689
Mcconnell, R.K. (1986) Method of and Apparatus for Pattern Recognition. USA, Patent No. US 4567610, January
Osuna, E., Freund, R., Girosit, F. (1997) Training support vector machines: An application to face detection. u: The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR IEEE'97), San Juan, Puerto Rico, June, Proceedings of, 130-136
Pavlović, M., Stojanović, B., Petrović, R., Stanković, S. (2018) Stankovic: Facial Expression and Lighting Conditions Influence on Face Recognition Performance. u: The International Conference IcETRAN 2018 (5th), Palic, Serbia, June, Proceedings of, 777-781
Pavlović, M., Stojanović, B., Petrović, R., Stanković, S. (2018) Fusion of Visual and Thermal Imagery for Illumination Invariant Face Recognition System. u: The Symposium on Neural Networks and Applications (NEUREL) (14th), Belgrade, Serbia, November, Proceedings of, 1-5
Petrović, R., Stojanović, B., Pavlović, M., Stanković, S. (2018) Thermal-to-Visible Face Recognition for Illumination Invariant Systems. u: The International Conference IcETRAN 2018 (5th), Palic, Serbia, June, Proceedings of, 766-771
Rockafellar, R.T. (1993) Lagrange Multipliers and Optimality. SIAM Review, 35(2): 183-238
Schölkopf, B. (2000) The Kernel Trick for Distances. u: The International Conference on Neural Information Processing Systems (13th), Denver, Colorado, May, Proceedings of, pp. 283 - 289
Shu, C., Ding, X., Fang, C. (2011) Histogram of the oriented gradient for face recognition. Tsinghua Science and Technology, 16(2): 216-224
Suykens, J.A.K., Vandewalle, J. (1999) Least squares support vector machine classifiers. Neural Processing Letters, 9(3): 293-300
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE1903387P
objavljen u SCIndeksu: 13.02.2020.
Creative Commons License 4.0