- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:33
- full-text downloads in 30 days:15
|
|
2022, vol. 59, iss. 1, pp. 1-8
|
Characterization of tomato genetic resources in the function of breeding
Karakterizacija genetičkih resursa paradajza u funkciji oplemenjivanja
aInstitute of Field and Vegetable Crops, Novi Sad bInstitute for Food Technology, Novi Sad cUniversity of Belgrade, Faculty of Agriculture
email: svetlana.glogovac@ifvcns.ns.ac.rs
Project: Ministry of Education, Science and Technological Development, Republic of Serbia (Institution: Institute of Field and Vegetable Crops, Novi Sad) (MESTD - 451-03-68/2020-14/200032) Ministry of Education, Science and Technological Development, Republic of Serbia (Institution: Institute for Food Technology, Novi Sad) (MESTD - 451-03-68/2020-14/200222)
Abstract
Tomato is one of the most important species belonging to the Solanaceae family. Focusing on the importance of tomato in human nutrition and the problem of narrowed genetic variability, the aim of the study was to assess morphological and chemical diversity in IFVCNS germplasm collection. Twenty genotypes were analysed for the morphological and chemical fruit traits: average mass (g), length (cm), diameter (cm), pericarp thickness (mm), locules number, moisture content (%), total soluble solids (°Brix), ash content (%), total acidity (%) and pH value. Selected plant material for analysis included: landraces, traditional varieties, breeding lines and commercial varieties. Differences among tomato genotypes in all fruit traits were determined. Fruit mass and locules number had the highest coefficient of variation. The least differences between genotypes were observed in the fruit moisture content. Four principal components accounted for 90.6% of total variance or 36.5%, 24.2%, 19.8% and 10.1%, respectively. Along the axis of the first main component, genotypes were classified into three groups. The first component was defined by fruit length, diameter and mass. The second component was correlated with pericarp thickness and locules number, and the third with moisture content, ash content and total soluble solids. Based on the cluster analysis, genotypes were classified into three groups which were in agreement with the PCA groups. Hybridization between genotypes from different groups was proposed in order to create new hybrids and varieties and to increase tomato germplasm diversity. By crossing those genotypes, improved recombinations in morphological and chemical traits can be expected.
Sažetak
Paradajz je jedna od najznačajnih vrsta iz familije Solanaceae. Fokusirajući se na značaj paradajza u ljudskoj ishrani i problem njegove sužene genetske varijabilnosti, cilj istraživanja je bio da se proceni morfološki i hemijski diverzitet u kolekciji germplazme Instituta za ratarstvo i povrtarstvo u Novom Sadu. Dvadeset genotipova je odabrano za analizu sledećih osobina ploda: prosečna masa (g), dužina (cm), širina (cm), debljina perikarpa (mm), broj komora, sadržaj vode (%), ukupna rastvorljiva suva materija (°Brix), sadržaj pepela (%), ukupna kiselost (%) i pH vrednost. Biljni materijal odabran za analizu obuhvatao je: lokalne populacije, stare sorte, oplemenjivačke linije i komercijalne sorte. Utvrđene su razlike između genotipova u svim ispitivanim osobinama. Prosečna masa ploda i broj komora imali su najveći koeficijent varijacije. Ispitivani genotipovi su se najmanje razlikovali u sadržaju vode u plodu. Četiri glavne komponente objasnile su 90,6% ukupne varijabilnosti ili 36,5%, 24,2%, 19,8% i 10,1%, redom. Duž ose prve glavne komponente genotipovi su klasifikovani u tri grupe. Prva komponenta je definisana dužinom, širinom i prosečnom masom ploda. Druga komponenta je bila u korelaciji sa debljinom perikarpa i brojem komora, a treća sa sadržajem vode, pepela i ukupne rastvorljive suve materije. Klaster analizom genotipovi su klasifikovani u tri grupe koje su bile u saglasnosti sa PCA grupama. U cilju stvaranja novih sorti i hibrida, kao i povećanja diverziteta germplazme paradajza, predložena je hibridizacija genotipova iz različitih grupa. Ukrštanjem tih genotipova mogu se očekivati unapređene rekombinacije u morfološkim i hemijskim osobinama.
|
|
|
References
|
|
Adubofuor, J., Amankwah, E.A., Arthur, B.S., Appiah, F. (2010) Comparative study related to physico-chemical properties and sensory qualities of tomato juice produced from oranges, tomatoes and carrots. African Journal of Food Science, 4(7): 427-433
|
|
Ali, M.Y., Sina, A.A.I., Khandker, S.S., Neesa, L., Tanvir, E.M., Kabir, A., Khalil, M.I., Gan, S.H. (2021) Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1): 45-45
|
|
Alonso, A., García-Aliaga, R., García-Martínez, S., Ruiz, J.J., Carbonell-Barrachina, A.A. (2009) Characterization of Spanish tomatoes using aroma composition and discriminant analysis. Food Science and Technology International, 15(1): 47-55
|
|
Amor, M.A., Amor, F.M. (2007) Response of tomato plants to deficit irrigation under surface or subsurface drip irrigation. Journal of Applied Horticulture, 9(2): 97-100
|
|
AOAC International (2000) Method 925.53 -acids (total) in canned vegetables: Official methods of analysis of association of official analytical chemists. Arlington, Virginia, USA, 17th ed
|
|
Aoun, A.B., Lechiheb, B., Benyahya, L., Ferchichi, A. (2013) Evaluation of fruit quality traits of traditional varieties of tomato (Solanum lycopersicum) grown in Tunisia. African Journal of Food Science, 7(10): 350-354
|
|
Bernousi, I., Emami, A., Tajbakhsh, M., Darvishzadeh, R. (2011) Studies on genetic variability and correlation among the different traits in Solanum lycopersicum l. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(1): 152-152
|
|
Castellana, S., Ranzino, L., Beritognolo, I., Cherubini, M., Luneia, R., Villani, F., Mattioni, C. (2020) Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum lycopersicum L.) landraces through SSR markers and application for varietal identification. Genetic Resources and Crop Evolution, 67(7): 1807-1820
|
|
Cebolla-Cornejo, J., Roselló, S., Nuez, F. (2013) Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162(23): 150-164
|
|
Dias, J.S. (2012) Nutritional quality and health benefits of vegetables: A review. Food and Nutrition Sciences, 03(10): 1354-1374
|
|
Gonias, E.D., Ganopoulos, I., Mellidou, I., Bibi, A.C., Kalivas, A., Mylona, P.V., Osanthanunkul, M., Tsaftaris, A., Madesis, P., Doulis, A.G. (2019) Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genetic Resources and Crop Evolution, 66(6): 1295-1309
|
|
Grandillo, S., Ku, H.M., Tanksley, S.D. (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theoretical and Applied Genetics, 99(6): 978-987
|
|
Henareh, M., Dursun, A., Abdoullahi, M.B. (2015) Genetic diversity in tomato landraces collected from Turkey and Iran revealed by morphological characters. Acta Sci Pol Hort Cult, 14(2), 87-96
|
|
Hernández-Bautista, A., Lobato-Ortiz, R., Cruz-Izquierdo, S., García-Zavala, J.J., Chávez-Servia, J.L., Hernández-Lea, E., Bonilla-Barrientos, O. (2015) Fruit size QTLs affect in a major proportion the yield in tomato. Chilean Journal of Agricultural Research, 75(4), 402-409
|
|
Kumar, V., Nandan, R., Srivastava, K., Sharma, S.K., Kumar, R., Kumar, A. (2013) Genetic parameters and correlation study for yield and quality traits in tomato (Solanum lycopersicum L). Plant Archives, 13: 463-467
|
|
Laurentin, H.E., Karlovsky, P. (2006) Genetic relationship and diversity in a sesame (Sesamum indicum L.) germplasm collection using amplified fragment length polymorphism (AFLP). BMC Genetics, 7(1): 1-10
|
|
Marín-Montes, I.M., Rodríguez-Pérez, J.E., Sahagún-Castellanos, J., Hernández-Ibánẽ, L., Velasco-García, Á.M. (2016) Morphological and molecular variation in 55 native tomato collections from Mexico. Revista Chapingo Serie Horticultura, 22(2): 117-131
|
|
Meena, O.P., Bahadur, V. (2015) Breeding potential of indeterminate tomato (Solanum lycopersicum L.) accessions using D2 analysis. Sabrao Journal of Breeding and Genetics, 47(1): 49-59
|
|
Mehta, N., Asati, B.S. (2008) Genetic relationship of growth and development traits with fruit yield in tomato (Lycopersicon esculentum mill). Karnataka Journal of Agricultural Science, 21(1): 92-96
|
|
Pal, R.S., Hedau, N.K., Kant, L., Pattanayak, A. (2018) Functional quality and antioxidant properties of tomato genotypes for breeding better quality varieties. Electronic Journal of Plant Breeding, 9(1): 1-8
|
|
Paulauskas, A., Jodinskienė, M., Griciuvienė, L., Žukauskienė, J., Petraitienė, E., Brazauskienė, I. (2013) Morphological traits and genetic diversity of differently overwintered oilseed rape (Brassica napus L.) cultivars. Zemdirbyste-Agriculture, 100(4): 409-416
|
|
Pawar, R.M., Prajapati, R.M., Sawant, D.M., Patil, A.H. (2013) Genetic divergence in Indian bean (Lablab purpureus L. Sweet). Electronic Journal of Plant Breeding, 4(2): 1171-1174
|
|
Pilar, C.D.M.A., Marçal, F.P., Venturoli, F., de Melo, S.C., Rubio, N.A. (2015) Morphoagronomic characterization of tomato plants and fruit: A multivariate approach. Advances in Agriculture, 2015: 1-6
|
|
Rodríguez, G.R., Muños, S., Anderson, C., Sim, S.C., Michel, A., Causse, M., Gardener, B.B., Francis, D., van der Knaap, E. (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiology, 156(1): 275-285
|
|
Sacco, A., Ruggieri, V., Parisi, M., Festa, G., Rigano, M.M., Picarella, M.E., Mazzucato, A., Barone, A. (2015) Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS One, 10(9): e0137139-e0137139
|
2
|
Sokal, R.R., Michener, C.D. (1958) A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38: 1409-1438
|
|
Tošić, I., Bošković-Rakočević, Lj., Predić, T., Pržulj, N., Savić, B., Trkulja, V. (2018) Assessment of Dutch tomato hybrids grown in conditions of Western Bosnia and Herzegovina. Genetika, 50(3): 933-942
|
|
Vercammen, A., Vivijs, B., Lurquin, I., Michiels, C.W. (2012) Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce. International Journal of Food Microbiology, 152(3): 162-167
|
|
Wang, Y., Li, W., Lu, C., Fan, S., Fu, C., Chen, M., Zhao, L. (2017) Evaluation of cultivated tomato germplasm resources. Pakistan Journal of Botany, 49(5): 1857-1865
|
|
Wilkerson, E.D., Anthon, G.E., Barrett, D.M., Sayajon, G.F.G., Santos, A.M., Rodriguez-Saona, L.E. (2013) Rapid assessment of quality parameters in processing tomatoes using hand-held and benchtop infrared spectrometers and multivariate analysis. Journal of Agricultural and Food Chemistry, 61(9): 2088-2095
|
|
Yeboaha, N.E., Maalekuu, B.K., Yi, F., Oppong-Sekyere, D. (2014) Enhancing postharvest qualities in tomato value chains: The impact of cultivar types as quality indicator. International Journal of Agricultural Science, 4(11): 318-325
|
|
|
|