Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 2 od 12  
Back povratak na rezultate
2017, vol. 54, br. 2, str. 79-86
Bioaktivne komponente u funkciji oplemenjivanja industrijskog paradajza
aInstitut za povrtarstvo, Smederevska Palanka
bUniverzitet u Kragujevcu, Agronomski fakultet, Čačak
cUniverzitet u Beogradu, Poljoprivredni fakultet

e-adresajzdravkovic@institut-palanka.co.rs
Projekat:
Novi koncept oplemenjivanja sorti i hibrida povrća namenjenih održivim sistemima gajenja uz primenu biotehnoloških metoda (MPNTR - 31059)

Ključne reči: industrijski paradajz; selekcione linije; PCA; antioksidativna aktivnost; nutrijenti
Sažetak
Selekcija linija paradajza namenjenog industrijskoj preradi prema osobinama koje definišu njihovu nutritivnu vrednost predstavljaju potencijal koji će se reflektovati u proizvodu dobijenom od plodova paradajza. U isto vreme ispitan je i tehnološki proces pripreme soka paradajza (100 °C) kao i sušenje plodova na toplom vazduhu, kako bi se utvrdio optimalni tehnološki proces koji najmanje narušava prirodni potencijal nutrijenata sadržanih u svežim plodovima. Ispitivanje je sprovedeno na 6 linija i jednoj sorti industrijskog paradajza gde su ispitani sadržaj vitamina C, vitamina E, likopina, β-carotina, fenola, flavonoida, suve materije i ukupni antioksidativni kapacitet, standardnim metodama za utvrđivanje sadržaja ovih parametara. Grupisanje je izvršeno prema osobinama prosečnog sadržaja karetinoida (likopen, β-karoten), vitamina C, vitamina E, fenola, flavonoida, suve materije i ukupnog antioksidatinog kapaciteta u plodu paradajza, pomoću PCA analize. Prve dve principle komponente odgovorne su za 77,18 % ukupne varijabilnosti ispitivanih uzoraka. Uticaj ostalih pet komponenti je mali i one su odgovorne za 22,18 % varijabilnosti. Antioksidativna aktivnost je najbolje očuvana posle dorade kroz male gubitke likopina i β-karotina posle dorade. Gubici vitamina C, vitamina E, fenola, flavonoida pri termičkoj obradi su veliki i to najviše u soku, dok kod sušenog proizvoda ti gubici su nešto manji. Gubici nutrijenata su u funkciji visine temperature kojima su plodovi bili izlagani pri termičkoj obradi. Kao najbolji genotipovi ocenjeni su SPRZ i SPSM.
Reference
Abushita, A. A., Daood, H. G., Biacs, P. A. (2000) Change in Carotenoids and Antioxidant Vitamins in Tomato as a Function of Varietal and Technological Factors. Journal of Agricultural and Food Chemistry, 48(6): 2075-2081
Asami, D.K., Hong, Y., Barrett, D.M., Mitchell, A.E. (2003) Processing-induced changes in total phenolics and procyanidins in clingstone peaches. Journal of the Science of Food and Agriculture, 83(1): 56-63
Basavaraja, N., Hulamani, N.C. (2001) Correlation studies for quantitative characters in chilli (Capsicum annuum L.). u: 11th Meeting on genetics and breeding of capsicum and eggplant, Antalya, Turkey, 9 (13); 43-46
Borguini, R.G., Bastos, D.H.M., Moita-Neto, J.M., Capasso, F.S., Torres, E.A.F.da S. (2013) Antioxidant potential of tomatoes cultivated in organic and conventional systems. Brazilian Archives of Biology and Technology, 56(4): 521-529
Brighente, I.M.C., Dias, M., Verdi, L.G., Pizzolatti, M.G. (2007) Antioxidant Activity and Total Phenolic Content of Some Brazilian Species. Pharmaceutical Biology, 45(2): 156-161
Caldwell, C.R., Britz, S.J., Mirecki, R.M. (2005) Effect of Temperature, Elevated Carbon Dioxide, and Drought during Seed Development on the Isoflavone Content of Dwarf Soybean [ Glycine max (L.) Merrill] Grown in Controlled Environments. Journal of Agricultural and Food Chemistry, 53(4): 1125-1129
Canene-Adams, K., Campbell, J.K., Zaripheh, S., Jeffery, E.H., Erdman, J.W. (2005) The tomato as a functional food. Journal of Nutrition, 1226-1230; 135
Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M.-I., Nunes-Nesi, A., Nikiforova, V., Centero, D., Ratzka, A., Pauly, M., Sweetlove, L. J., Fernie, A. R. (2006) Integrated Analysis of Metabolite and Transcript Levels Reveals the Metabolic Shifts That Underlie Tomato Fruit Development and Highlight Regulatory Aspects of Metabolic Network Behavior. Plant Physiology, 142(4): 1380-1396
Cvijović, M., Aćamović-Đoković, G. (2005) Praktikum iz biohemije. Čačak: Agronomski fakultet, in Serbian
Davey, M.W., Montagu, M.V., Inz, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I.J.J., Strain, J.J., Favell, D., Fletcher, J. (2000) PlantL-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. Journal of the Science of Food and Agriculture, 80(7): 825-860
de Nardo, T., Shiroma-Kian, C., Halim, Y., Francis, D., Rodriguez-Saona, L.E. (2009) Rapid and Simultaneous Determination of Lycopene and β-Carotene Contents in Tomato Juice by Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 57(4): 1105-1112
Demiray, E., Tulek, Y., Yilmaz, Y. (2013) Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT - Food Science and Technology, 50(1): 172-176
Dewanto, V., Wu, X., Adom, K.K., Liu, R.H. (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry, 50(10): 3010
Foolad, M.R. (2007) Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007: 1-52
Frusciante, L., Carli, P., Ercolano, M.R., Pernice, R., di Matteo, A., Fogliano, V., Pellegrini, N. (2007) Antioxidant nutritional quality of tomato. Molecular Nutrition & Food Research, 51(5): 609-617
Ganeva, D., Ivanova, I., Pevicharova, G. (2006) Identification of determinate tomato F1 hybrids using cluster analysis. u: First International Symposium Ecological Approaches towards the Production of Safety Food, 19-20 of October, Plovdiv, Bulgaria, Proceedings, 205-210
García-Valverde, V., Navarro-González, I., García-Alonso, J., Periago, M.J. (2013) Antioxidant Bioactive Compounds in Selected Industrial Processing and Fresh Consumption Tomato Cultivars. Food and Bioprocess Technology, 6(2): 391-402
Georgé, S., Tourniaire, F., Gautier, H., Goupy, P., Rock, E., Caris-Veyrat, C. (2011) Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chemistry, 124(4): 1603-1611
Hinneburg, I., Neubert, R.H. H. (2005) Influence of Extraction Parameters on the Phytochemical Characteristics of Extracts from Buckwheat ( Fagopyrum esculentum ) Herb. Journal of Agricultural and Food Chemistry, 53(1): 3-7
Jesús, P.M., García-Alonso, J., Jacob, K., Belén, O.A., José, B.M., Dolores, I.M., Martínez, C., Ros, G. (2009) Bioactive compounds, folates and antioxidant properties of tomatoes ( Lycopersicum esculentum ) during vine ripening. International Journal of Food Sciences and Nutrition, 60(8): 694-708
Lavelli, V., Pagliarini, E., Giovanelli, G., Peri, C., Zanoni, B. (2001) The antioxidant activity of tomato. I. Evaluation of fresh and processed products by chemical-physical indexes and biochemical model systems through principal component analysis. Acta Horticulturae, (542): 205-210
Martínez-Hernández, G.B., Boluda-Aguilar, M., Taboada-Rodríguez, A., Soto-Jover, S., Marín-Iniesta, F., López-Gómez, A. (2016) Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. Food Engineering Reviews, 8(1): 52-75
Mukhopadhyay, S., Luthria, D.L., Robbins, R.J. (2006) Optimization of extraction process for phenolic acids from black cohosh (Cimidfuga racemosa) by pressurized liquid extraction. Journal of the Science of Food and Agriculture, 156-162; 86
Nagata, M., Yamashita, I. (1992) imple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10): 925-928
Pék, Z., Szuvandzsiev, P., Daood, H., Neményi, A., Helyes, L. (2014) Effect of irrigation on yield parameters and antioxidant profiles of processing cherry tomato. Cent. Eur. J. Biol., 9(4); 383-395
Raiola, A., Rigano, M.M., Calafiore, R., Frusciante, L., Barone, A. (2014) Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediators of Inflammation, 2014: 1-16
Ruggieri, V., Bostan, H., Barone, A., Frusciante, L., Chiusano, M.L. (2016) Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. Plant Molecular Biology, 91(4-5): 397-412
Sánchez-Moreno, C., Plaza, L., de Ancos, B., Cano, M.P. (2005) Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2): 171-179
Seybold, C., Fröhlich, K., Bitsch, R., Otto, K., Böhm, V. (2004) Changes in Contents of Carotenoids and Vitamin E during Tomato Processing. Journal of Agricultural and Food Chemistry, 52(23): 7005-7010
Tedeschi, P., Coïsson, J.D., Maietti, A., Cereti, E., Stagno, C., Travaglia, F., Arlorio, M., Brandolini, V. (2011) Chemotype and genotype combined analysis applied to tomato (Lycopersicon esculentum Mill.) analytical traceability. Journal of Food Composition and Analysis, 24(2): 131-139
Toor, R.K., Savage, G.P., Heeb, A. (2006) Influence of different types of fertilisers on the major antioxidant components of tomatoes. Journal of Food Composition and Analysis, 19(1): 20-27
Trajković, J., Baras, J., Mirić, M., Siler, S. (1983) Analiza životnih namirnica. Beograd
Xu, F., Li, L., Huang, X., Cheng, H., Wang, Y., Cheng, S. (2010) Antioxidant and antibacterial properties of the leaves and stems of Premna microphylla. J. Med. Plants Res., 4(23); 2544-2550
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/ratpov54-13676
objavljen u SCIndeksu: 02.10.2017.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka