Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:14
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 3 od 13  
Back povratak na rezultate
2021, vol. 46, br. 1, str. 11-22
Gastroenterokardiologija - ili šta imaju zajedničko crevo i srce?
aInternistička ordinacija "Joksimović", Bor
bInternistička ordinacija "Dr Bastać", Zaječar
cSpecijalistička ordinacija za internu medicinu "Dr Pavlović kardiologija", Beograd

e-adresajoksaza@ptt.rs
Ključne reči: crevna mikrobiota; nutritivna disproporcija; disbioza; kardiovaskularne bolesti; metabolički poremećaji
Sažetak
Crevna mikrobiota našeg organizma je zajednica bakterija, arheja, gljivica, virusa i parazita koji čine jedinstveni ekosistem u digestivnom traktu koji se sastoji od oko 1014 mikroorganizama. Raznolikost ove zajednice kod pojedinih osoba nastaje zbog razlika u genomu domaćina i uticaja faktora životne sredine, uključujući higijenu, ishranu, način života i upotrebu različitih lekova. Značajan broj dokaza sugeriše da bi promene u mikrobioti mogle da igraju ulogu u kardiovaskularnim bolestima. Rezultati istraživačkih radova tokom poslednje dve decenije potvrdili su da izmenjeni sastav mikrobiote (disbioza) doprinosi razvoju različitih bolesti, uključujući kardiovaskularne bolesti, dijabetes tipa 2, hronične bolesti bubrega, nealkoholnu masnu jetru, hronične upalne bolesti creva i čak određene vrste karcinoma. Sve je više dokaza da ubuduće, pored dosadašnjih faktora predispozicije za kardiovaskularne i metaboličke bolesti, uključujući genetske faktore, faktore životne sredine i životnog stila, treba računati i na nove faktore rizika poput nutritivne disproporcije i disbioze creva. Tako "novim očima" gledamo na vezu između gastrointestinalnog trakta i kardiovaskularnog sistema odnosno na "osovinu crevo-srce".
Reference
Ahmadmehrabi, S., Tang, W.H. (2017) Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol, 32(6), 761-766
Andraws, R., Berger, J.S., Brown, D.L. (2005) Effects of antibiotic therapy on outcomes of patients with coronary artery disease: A meta-analysis of randomized controlled trials. JAMA, 293, 2641-2647
Antal, I., Jelić, M., Sila, S., Kolaček, S., Tambić-Andrašević, A. (2019) Ljudska mikrobiota i mikrobiom. Acta medica Croatica, 73(1), 3-11, https://hrcak.srce.hr
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., Deroos, P., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J., Rudensky, A.Y. (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature, 504(7480), 451-455
Backhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., Gordon, J.I. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences, 101(44), 15718-15723
Bäckhed, F., Manchester, J.K., Semenkovich, C.F., Gordon, J.I. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, 104(3), 979-984
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761-1772
Chambers, E.S., Byrne, C.S., Morrison, D.J., Murphy, K.G., Preston, T., Tedford, C., Garcia-Perez, I., Fountana, S., Serrano-Contreras, J.I., Holmes, E., Reynolds, C.J., Roberts, J.F., Boyton, R.J. (2019) Dietary supplementation with inulin-propionate ester or inulin improves insulin sensitivity in adults with overweight and obesity with distinct effects on the gut microbiota, plasma metabolome and systemic inflammatory responses: A randomised cross-o. Gut, 68(8), 1430-1438
Chambers, E.S., Preston, T., Frost, G., Morrison, D.J. (2018) Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports, 7(4), 198-206
Colman, R.J., Rubin, D.T. (2014) Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. Journal of Crohn's and Colitis, 8(12), 1569-1581
Conraads, V.M., Jorens, P.G., de Clerck, L.S., van Saene, H.K., Ieven, M.M., Bosmans, J.M., Schuerwegh, A., Bridts, C.H., Wuyts, F., Stevens, W.J., Anker, S.D., Rauchhaus, M., Vrints, C.J. (2004) Selective intestinal decontamination in advanced chronic heart failure: A pilot trial. European Journal of Heart Failure, 6(4), 483-491
Costanza, A.C., Moscavitch, S.D., Faria, N.H.C.C., Mesquita, E.T. (2015) Probiotic therapy with Saccharomyces boulardii for heart failure patients: A randomized, double-blind, placebo-controlled pilot trial. International Journal of Cardiology, 179, 348-350
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., et al. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559-563
de Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., Storia, L.A., Laghi, L., et al. (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), 1812-1821
de la Serre, C.B., Ellis, C.L., Lee, J., Hartman, A.L., Rutledge, J.C., Raybould, H.E. (2010) Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(2), G440-G448
Duncan, S.H., Barcenilla, A., Stewart, C.S., Pryde, S.E., Flint, H.J. (2002) Acetate utilization and butyryl coenzyme A (CoA): Acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Applied and Environmental Microbiology, 68(10), 5186-5190
Fox, M.A., Peterson, S., Fabri, B.M., van Saene, H.K.F., Williets, T. (1991) Selective decontamination of the digestive tract in cardiac surgical patients. Critical Care Medicine, 19(12), 1486-1490
Gan, X.T., Ettinger, G., Huang, C.X., Burton, J.P., Haist, J.V., Rajapurohitam, V., et al. (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail, 7(3), 491-499
Gan, X.T., Ettinger, G., Huang, C.X., Burton, J.P., Haist, J.V., Rajapurohitam, V., Sidaway, J.E., Martin, G., Gloor, G.B., Swann, J.R., Reid, G., Karmazyn, M. (2014) Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circulation: Heart Failure, 7(3), 491-499
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K., Reid, G. (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14(8), 491-502
Gomez-Arango, L.F., Barrett, H.L., McIntyre, D.H., Callaway, L.K., Morrison, M., Dekker, N.M. (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension, 68(4), 974-981
Harris, K., Kassis, A., Major, G., Chou, C.J. (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?. Journal of Obesity, 2012, 879151
He, Z., Wang, J., Chen, Y., Cong, X., Li, N., Ding, R., Hultgårdh-Nilsson, A., Liang, C. (2019) Potential risk associated with direct modulation of the gut flora in patients with heart failure. ESC Heart Failure, 6(3), 555-556
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., Calder, P.C., Sanders, M.E. (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506-514
Honour, J. (1982) The possible involvement of intestinal bacteria in steroidal hypertension. Endocrinology, 110(1), 285-287
Jia, Q., Li, H., Zhou, H., Zhang, X., Zhang, A., Xie, Y., et al. (2019) Microbiota and irritable bowel syndrome: A critical inventory. Cardiovasc Ther, 2019, 5164298
Jin, M., Qian, Z., Yin, J., Xu, W., Zhou, X. (2019) The role of intestinal microbiota in cardiovascular disease. Journal of Cellular and Molecular Medicine, 23(4), 2343-2350
Johnson, L.P., Walton, G.E., Psichas, A., Frost, G.S., Gibson, G.R., Barraclough, T.G. (2015) Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Nutrients, 7(6), 4480-4497
Kamo, T., Akazawa, H., Suda, W., Saga-Kamo, A., Shimizu, Y., Yagi, H., Liu, Q., Nomura, S., Naito, A.T., Takeda, N., Harada, M., Toko, H., Kumagai, H., Ikeda, Y., Takimoto, E., Suzuki, J. (2017) Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One, 12(3), e0174099
Karbach, S.H., Schönfelder, T., Brandão, I., Wilms, E., Hörmann, N., Jäckel, S., Schüler, R., Finger, S., Knorr, M., Lagrange, J., Brandt, M., Waisman, A., Kossmann, S., Schäfer, K., Münzel, T., Reinhardt, C. (2016) Gut microbiota promotes angiotensin II-induced arterial hy pertension and vascular dysfunction. Journal of the American Heart Association, 5(9), e003698
Karlsson, F.H., Fåk, F., Nookaew, I., Tremaroli, V., Fagerberg, B., Petranovic, D., et al. (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun, 3(1), 1245
Kitai, T., Kirsop, J., Tang, W.H. (2016) Exploring the microbiome in heart failure. Curr Heart Fail Rep, 13(2),103-109
Knoop, K.A., Mcdonald, K.G., Kulkarni, D.H., Newberry, R.D. (2016) Antibiotics promote inflammation through the translocation of native commensal colonic bacteria. Gut, 65(7), 1100-1109
Koh, A., de Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F. (2016) From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell, 165(6), 1332-1345
Kummen, M., Mayerhofer, C.C.K., Vestad, B., Broch, K., Awoyemi, A., Storm-Larsen, C., Ueland, T., Yndestad, A., Hov, J.R., Trøseid, M. (2018) Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. Journal of the American College of Cardiology, 71(10), 1184-1186
Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J.S., Rafiee, P., Gross, G.J., Salzman, N.H., Baker, J.E. (2012) Intestinal microbiota determine severity of myocardial infarction in rats. FASEB Journal, 26(4), 1727-1735
Lam, V., Su, J., Hsu, A., Gross, G.J., Salzman, N.H., Baker, J.E. (2016) Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One, 11(8), e0160840
Ley, R.E., Backhed, F., Turnbaugh, P., Lozupone, C.A., Knight, R.D., Gordon, J.I. (2005) Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070-11075
Lin, P.P., Hsieh, Y.M., Kuo, W.W., Lin, Y.M., Yeh, Y.L., Lin, C.C., et al. (2013) Probiotic-fermented purple sweet potato yogurt activates compensatory IGFIR/PI3K/Akt survival pathways and attenuates cardiac apoptosis in the hearts of spontaneously hypertensive rats. Int J Mol Med, 32(6), 1319-1328
Lloyd-Price, J., Abu-Ali, G., Huttenhower, C. (2016) The healthy human microbiome. Genome Medicine, 8(1), 51-51
Lopez-Garcia, E., Rodriguez-Artalejo, F., Li, T.Y., Fung, T.T., Li, S., Willett, W.C., et al. (2014) The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. Am J Clin Nutr, 99(1), 172-180
Louis, P., Flint, H.J. (2017) Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology, 19(1), 29-41
Luedde, M., Winkler, T., Heinsen, F.A., Rühlemann, M.C., Spehlmann, M.E., Bajrovic, A., Lieb, W., Franke, A., Ott, S.J., Frey, N. (2017) Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Failure, 4(3), 282-290
Ma, J., Li, H. (2018) The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol, 9, 1082
Marques, F.Z., Nelson, E., Chu, P.Y., Horlock, D., Fiedler, A., Ziemann, M., Tan, J.K., Kuruppu, S., Rajapakse, N.W., El-Osta, A., Mackay, C.R., Kaye, D.M. (2017) High-fiber diet and acetate supplementation change the gut microbi-ota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation, 135(10), 964-977
Mayerhofer, C.C.K., Awoyemi, A., Hov, J.R., Trøseid, M., Broch, K. (2019) Reply: Potential risk associated with direct modulation of the gut flora in patients with heart failure. ESC Heart Failure, 6(3), 557-558
Miyamoto, J., Kasubuchi, M., Nakajima, A., Irie, J., Itoh, H., Kimura, I. (2016) The role of short-chain fatty acid on blood pressure regulation. Current Opinion in Nephrology and Hypertension, 25(5), 379-383
Nallu, A., Sharma, S., Ramezani, A., Muralidharan, J., Raj, D. (2017) Gut microbiome in chronic kidney disease: Challenges and opportunities. Transl Res, 179, 24-37
Natarajan, N., Hori, D., Flavahan, S., Steppan, J., Flavahan, N.A., Berkowitz, D.E., Pluznick, J.L. (2016) Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiological Genomics, 48(11), 826-834
Niebauer, J., Volk, H.D., Kemp, M., Dominguez, M., Schumann, R.R., Rauchhaus, M., et al. (1999) Endotoxin and immune activation in chronic heart failure: A prospective cohort study. Lancet, 353(9167), 1838-1842
Ott, S.J., El, M.N.E., Musfeldt, M., Hellmig, S., Freitag, S., Rehman, A., et al. (2006) Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation, 113(7), 929-937
Packer, C.S., Rice, A.E., Johnson, T.C. (2014) Oxidized low density lipoprotein (OX-LDL) induced arterial muscle contraction signaling mechanisms. Open Hypertension Journal, 6(1), 20-26
Pasini, E., Aquilani, R., Testa, C., Baiardi, P., Angioletti, S., Boschi, F., Verri, M., Dioguardi, F. (2016) Pathogenic gut flora in patients with chronic heart failure. JACC: Heart Failure, 4(3), 220-227
Patel, R., Dupont, H.L. (2015) New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clin Infect Dis, 60, 108-121
Patterson, E., Cryan, J.F., Fitzgerald, G.F., Ross, P.R., Dinan, T.G., Stanton, C. (2014) Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 73(4), 477-489
Petrof, E.O., Gloor, G.B., Vanner, S.J., Weese, S.J., Carter, D., Daigneault, M.C., Brown, E.M., Schroeter, K., Allen-Vercoe, E. (2013) Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome, 1(1), 3
Pluznick, J.L., Protzko, R.J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., Brunet, I., Wan, L., Rey, F., Wang, T., Firestein, S.J., Yanagisawa, M., Gordon, J.I., Eichmann, A., Peti-Peterdi, J. (2013) Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proceedings of the National Academy of Sciences, 110(11), 4410-4415
Qi, Y., Aranda, J.M., Rodriguez, V., Raizada, M.K., Pepine, C.J. (2015) Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension: A case report. Int J Cardiol, 201, 157-158
Rey, F.E., Faith, J.J., Bain, J., Muehlbauer, M.J., Stevens, R.D., Newgard, C.B., Gordon, J.I. (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. Journal of Biological Chemistry, 285(29), 22082-22090
Rifai, L., Pisano, C., Hayden, J., Sulo, S., Silver, M.A. (2015) Impact of the DASH diet on endothelial function, exercise capacity, and quality of life in patients with heart failure. Baylor University Medical Center Proceedings, 28(2), 151-156
Salehi-Abargouei, A., Maghsoudi, Z., Shirani, F., Azadbakht, L. (2013) Effects of Dietary Approaches to Stop Hypertension (DASH)-style diet on fatal or nonfatal cardiovascular diseases-incidence: a systematic review and metaanalysis on observational prospective studies. Nutrition, 29(4), 611-618
Samuel, B.S., Shaito, A., Motoike, T., Rey, F.E., Backhed, F., Manchester, J.K., Hammer, R.E., Williams, S.C., Crowley, J., Yanagisawa, M., Gordon, J.I. (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences, 105(43), 16767-16772
Sekirov, I., Russell, S.L., Antunes, L.C., Finlay, B.B. (2010) Gut microbiota in health and disease. Physiol Rev, 90(3), 859-904
Seung, K.J., Kang, S., Lee, H., Yoon, C., Suh, J., Cho, Y. (2020) Metagenomic analysis of microbiota in patients with st-segment elevation myocardial infarction 2. Oral, gut, and thrombus microbiome in st-segment elevation myocardial infarction 112. JACC, 75(11)
Skok, P., Skok, K. (2020) Prebavna cev in srčno-žilne bolezni - ali imajo kaj skupnega?. Zdrav Vestn, 89(9-10), 528-538
Tamburini, S., Shen, N., Wu, H.C., Clemente, J.C. (2016) The microbiome in early life: Implications for health outcomes. Nat Med, 22(7), 713-722
Tan, J.K., McKenzie, C., Mariño, E., Macia, L., Mackay, C.R. (2017) Metabolite-sensing G protein-coupled receptors facilitators of diet-related immune regulation. Annual Review of Immunology, 35(1), 371-402
Tang, T.W.H., Chen, H.C., Chen, C.C., Yen, C.Y.T., Lin, C.J., Prajnamitra, R.P., Chen, L.C., Ruan, S., Lin, J.J., Lin, P.J., Lu, H., Kuo, C., Chang, C.M., Hall, A.D. (2019) Loss of gut microbiota alters immune system composition and cripples postinfarction cardiac repair. Circulation, 139(5), 647-659
Tang, W.H., Wang, Z., Levison, B.S., Koeth, R.A., Britt, E.B., Fu, X., et al. (2013) Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med, 368(17), 1575-1584
Tang, W.H., Kitai, T., Hazen, S.L. (2017) Gut microbiota in cardiovascular health and disease. Circ Res, 120(7), 1183-1196
Tang, W., Wang, Z., Fan, Y., Levison, B., Hazen, J.E., Donahue, L.M., et al. (2014) Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-n-oxide in patients with heart failure: Refining the gut hypothesis. J Am Coll Cardiol, 64(18), 1908-1914
Tiihonen, K., Tynkkynen, S., Ouwehand, A., Ahlroos, T., Rautonen, N. (2008) The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. British Journal of Nutrition, 100(1), 130-137
Townsend, M.K., Aschard, H., de Vivo, I., Michels, K.B., Kraft, P.B. (2016) Genomics, telomere length, epigenetics, and metabolomics in the nurses' health studies. American Journal of Public Health, 106(9), 1663-1668
Trøseid, M., et al. (2020) The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions review. 52, 102649-102649
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., Gordon, J.I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031
Vinod, N. (2019) The novel dimensions of cardio-metabolic health: Gut microbiota, dysbiosis and its fallouts. Curre Res Diabetes & Obes J, 11(1), 555805
Vrieze, A., van Nood, E., Holleman, F., Salojärvi, J., Kootte, R.S., et al. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 143(4), 913-916
Wang, Z., Roberts, A.B., Buffa, J.A., Levison, B.S., Zhu, W., Org, E., et al. (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of therosclerosis. Cell, 163, 1585-1595
Winkel, P., Hilden, J., Hansen, J.F., Kastrup, J., Kolmos, H.J., Kjoller, E., et al. (2015) Clarithromycin for stable coronary heart disease increases all-cause and cardiovascular mortality and cerebrovascular morbidity over 10 years in the claricor randomised, blinded clinical trial. Int J Cardiol, 182, 459-465
Yamashiro, K., Tanaka, R., Urabe, T., Ueno, Y., Yamashiro, Y., Nomoto, K., Takahashi, T., Tsuji, H., Asahara, T., Hattori, N. (2017) Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PLoS One, 12(2), e0171521-e0171521
Yang, T., Santisteban, M.M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J.M., Zadeh, M., Gong, M., Qi, Y., Zubcevic, J., Sahay, B., Pepine, C.J., Raizada, M.K., Mohamadzadeh, M. (2015) Gut dysbiosis is linked to hypertension. Hypertension, 65(6), 1331-1340
Yelin, I., Flett, K.B., Merakou, C., Mehrotra, P., Stam, J., Snesrud, E., et al. (2019) Genomic and epidemiological evidence of bacterial transmission from probiotic capsule to blood in ICU patients. Nat Med, 25, 1728-1732
Zhou, X., Li, J., Guo, J., Geng, B., Ji, W., Zhao, Q., et al. (2018) Gutdependent microbial translocation induces inflammation and cardiovascular events after STelevation myocardial infarction. Microbiome, 6(1), 66
 

O članku

jezik rada: srpski, engleski
vrsta rada: pregledni članak
DOI: 10.5937/tmg2101011J
primljen: 18.02.2021.
objavljen onlajn: 28.05.2021.
objavljen u SCIndeksu: 17.06.2021.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka