Metrika članka

  • citati u SCindeksu: [6]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:36
  • preuzimanja u poslednjih 30 dana:34
članak: 3 od 5  
Back povratak na rezultate
Građevinski materijali i konstrukcije
2017, vol. 60, br. 1, str. 3-30
jezik rada: srpski, engleski
vrsta rada: pregledni članak
objavljeno: 25/03/2017
doi: 10.5937/grmk1701003C
Creative Commons License 4.0
Pregled savremenih seizmičkih analiza i načina uvođenja prigušenja u njima
aInstitut za ispitivanje materijala Srbije - IMS, Beograd
bUniverzitet u Novom Sadu, Fakultet tehničkih nauka
cUniverzitet u Beogradu, Građevinski fakultet

e-adresa: mladen.cosic@ymail.com, folic@uns.ac.rs, stanko@grf.bg.ac.rs

Projekat

Razvoj i primena sveobuhvatnog pristupa projektovanju novih i proceni sigurnosti postojećih konstrukcija za smanjenje seizmičkog rizika u Srbiji (MPNTR - 36043)

Sažetak

Autori rada su, na osnovu analize velikog broja naučnih radova, dali prikaz sopstvene originalne sistematizacije seizmičkih analiza konstrukcija, a veliki deo njih je razvijen u poslednje dve decenije. Seizmičke analize su klasifikovane generalno u dve (četiri) grupe: linearne i nelinearne statičke analize; i linearne i nelinearne dinamičke analize. Posebno su klasifikovane analize nelinearnog seizmičkog odgovora konstrukcija, a posebno analize ciljnog pomeranja kojim se definiše odnos seizmičkog zahteva i seizmičkog odgovora. S druge strane, klasifikacija je sprovedena i u funkciji da li se nelinearan odgovor sistema dobija primenom inkrementalno-iterativnih procedura ili primenom poluiterativnih i/ili poluinkrementalnih procedura. Nelinearne dinamičke analize su klasifikovane prema konceptu matematičke formulacije, odnosno da li se zasnivaju na samo jednoj dinamičkoj analizi, većem broju dinamičkih analiza ili dobijaju rešenja u kombinaciji s drugim metodama. Primenom sprovedene sistematizacije seizmičkih analiza može se vrlo efikasno razmotriti koji tip analize je optimalan za analizu konstrukcija i koji tip analize je potrebno uzeti u obzir u fazi preliminarnih i finalnih analiza za naučna istraživanja i stručne projekte. U radu su, takođe, prikazani aspekti modeliranja prigušenja u analizi konstrukcija sistematizacijom tipova prigušenja i formiranim dijagramima tokova, a u zavisnosti od tipa primenjene analize: linearne i nelinearne, statičke i dinamičke. Sistematizacija prigušenja je sprovedena prema načinu uvođenja u proračun i to preko prigušenja materijala, prigušenja elemenata veze i prigušenja koja se direktno uvode u analize, a koje se sprovode u kapacitativnom, vremenskom i frekventnom domenu. Primenom razvijenih dijagrama tokova, u procesu kreiranja numeričkih modela konstrukcija, može se vrlo efikasno razmotriti koji tip prigušenja treba odabrati i na koji način uvesti prigušenje u analizu konstrukcija. Takođe, primenom razvijenih dijagrama tokova mogu se definisati i alternativni pristupi uvođenja prigušenja u analizu konstrukcija.

Ključne reči

Reference

*** (2009) CSI analysis reference manual. Berlekey, USA: Computers and Structures
*** (2004) Eurocode 8: Design of structures for earthquake resistance, Part I: General rules, seismic actions and rules for buildings, EN 1998-1. Brussels: CEN - European Committee for Standardization
*** (2000) FEMA 356: Prestandard and commentary for the seismic rehabilitation of buildings. Washington DC: American Society of Civil Engineers, Federal Emergency Management Agency
*** (2005) FEMA 440: Improvement of nonlinear static seismic analysis procedures. Washington DC: Applied technology council: Federal Emergency Management Agency, (ATC-55 Project)
*** (2009) NEHRP recommended seismic provisions for new buildings and other structures. Washington D.C., USA: Building Seismic Safety Council, FEMA 750P
*** (2012) Seismic performance assessment of buildings: Methodology. Washington, USA: Applied Technology Council, FEMA P-58-1
*** (2012) Seismic performance assessment of buildings: Implementation guide. Washington D.C., USA: Applied Technology Council, FEMA P-58-2
*** (1996) ATC 40: Seismic evaluation and retrofit of concrete buildings. Redwood City, USA: Applied Technology Council, Vol. 7
Adhikari, S. (2000) Damping Models for Structural Vibration. Cambridge University, Engineering Department, PhD thesis
Antoniou, S., Pinho, R. (2004) Development and verification of a displacement-based adaptive pushover procedure. Journal of Earthquake Engineering, 8(5): 643-661
Antoniou, S., Pinho, R. (2004) Advantages and limitations of adaptive and non-adaptive force-based pushover procedures. Journal of Earthquake Engineering, 8(4): 497-522
Aschheim, M., Black, E.F. (2000) Yield Point Spectra for Seismic Design and Rehabilitation. Earthquake Spectra, 16(2): 317-336
Avanaki, M., Estekanchi, H. (2012) Collapse analysis by endurance time method. International Journal of Optimization in Civil Engineering, Vol. 2, No. 2, pp. 287-299
Aydinogly, M. (2003) An incremental response spectrum analysis procedure based on inelastic spectral displacements for multi-mode seismic performance evaluation. Bulletin of Earthquake Engineering, Vol. 1, No. 1, pp. 3-36
Azarbakht, A., Dolšek, M. (2011) Progressive Incremental Dynamic Analysis for First-Mode Dominated Structures. Journal of Structural Engineering, 137(3): 445-455
Bhatt, C., Bento, R. (2014) The Extended Adaptive Capacity Spectrum Method for the Seismic Assessment of Plan-Asymmetric Buildings. Earthquake Spectra, 30(2): 683-703
Casarotti, C., Pinho, R. (2007) An adaptive capacity spectrum method for assessment of bridges subjected to earthquake action. Bulletin of Earthquake Engineering, 5(3): 377-390
Chopra, A. (1995) Dynamics of Structures: Theory and Applications to Earthquake Engineering. Englewood Cliffs, NJ: Prentice Hall
Chopra, A., Goel, R. (2001) A Modal Pushover Analysis Procedure to Estimating Seismic Demands for Buildings. u: PEER Report, Berkeley: University of California - Pacific Earthquake Engineering Research Center, 2001/03
Ćosić, M., Brčić, S. (2013) Iterative Displacement Coefficient Method: Mathematical Formulation ana Numerical Analyses. Journal of the Croatian Association of Civil Engineers, Vol. 65, No. 3, pp. 199-211
Ćosić, M. (2015) Nelinearna statička i dinamička seizmička analiza okvirnih zgrada prema performansama. Beograd: Građevinski fakultet, doktorska disertacija
Ćosić, M., Folić, R. (2015) Performance analysis of damaged buildings applying scenario of related non-linear analyses and damage coefficient. Građevinski materijali i konstrukcije, vol. 58, br. 3, str. 3-27
Ćosić, M., Brčić, S. (2014) The development of controlled damage mechanisms-based design method for nonlinear static pushover analysis. Facta universitatis - series: Architecture and Civil Engineering, vol. 12, br. 1, str. 25-40
Ćosić, M., Brčić, S. (2012) Metodologija pripreme i obrade akcelerograma za linearne i nelinearne seizmičke analize konstrukcija. Izgradnja, vol. 66, br. 11-12, str. 511-526
Dolsek, M. (2010) Estimation of Seismic Response Parameters Through Extended Incremental Dynamic Analysis. Dordrecht: Springer Nature, str. 285-304
Dolšek, M., Fajfar, P. (2004) IN2: A simple alternative for IDA. u: The 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 3353
Elnashai, A.S., Di, S.L. (2008) Fundamentals of Earthquake Engineering. Chichester, UK: Wiley-Blackwell
Fajfar, P. (2000) A Nonlinear Analysis Method for Performance‐Based Seismic Design. Earthquake Spectra, 16(3): 573-592
Farghaly, A.A. (2013) Parametric Study on Equivalent Damping Ratio of Different Composite Structural Building Systems. Steel & Composite structures, 14(4): 349-365
Folić, R., Ćosić, M., Folić, B. (2015) Damping models for flow chart based structural analysis. u: The 15th International Science Conference VSU, Sofia, Bulgaria, pp. 155-164
Folić, R., Ćosić, M. (2016) Performance-based non-linear seismic methods of structures: A review of scientific knowledge in the last 20 Years. u: The 16th International Scientific Conference VSU, Sofia, Bulgaria, pp. 146-156
Freeman, S. (2004) Review of the development of the capacity spectrum method. ISET Journal of Earthquake Technology, Paper No. 438, Vol. 41, No. 1, pp. 1-13
Guyader, A., Iwan, W. (2004) An improved capacity spectrum method employing statistically optimized linearization parameters. u: The 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 3020
Kalkan, E., Kunnath, S. (2004) Method of modal combinations for pushover analysis of buildings. u: The 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 2713
Kovačević, D. (2006) MKE modeliranje u analizi konstrukcija. Beograd: Građevinska knjiga
Krawinkler, H. (1999) Challenges and progress in performance-based earthquake engineering. u: International Seminar on Seismic Engineering for Tomorrow: In Honor of Professor Hiroshi Akiyama, Tokyo, Japan, pp. 1-10
Lagaros, N.D. (2010) Multicomponent incremental dynamic analysis considering variable incident angle. Structure and Infrastructure Engineering, 6(1-2): 77-94
Liao, W.C. (2010) Performance-based plastic design of earthquake resistant reinforced concrete moment frames. Ann Arbor, USA: University of Michigan, Doctoral dissertation
Lin, T., Baker, J. (2014) Introducing adaptive incremental dynamic analysis. u: Deodatis, George; Ellingwood, Bruce; Frangopol, Dan [ur.] Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures, Informa UK Limited, str. 805-811
Lin, Y., Chang, K. (2003) An improved capacity spectrum method for ATC-40. Earthquake Engineering & Structural Dynamics, 32(13): 2013-2025
Lin, Y., Miranda, E. (2004) Non-iterative capacity spectrum method based on equivalent linearization for estimating inelastic deformation demands of buildings. Structural engineering, 21(2): 113S-119S
Manoukas, G., Avramidis, I. (2014) Improved multimode pushover procedure for asymmetric in plan buildings under biaxial seismic excitation-application to tall buildings. Structural Design of Tall and Special Buildings, 24(6): 397-420
Moehle, J., Krawinkler, H. (2004) A framework methodology for performance-based earthquake engineering. u: The 13th World Conference on Earthquake Engineering, Vancouver, Canada, Paper No. 679
Moon, K., Han, S.W., Lee, T.S., Seok, S.W. (2012) Approximate MPA-based method for performing incremental dynamic analysis. Nonlinear Dynamics, 67(4): 2865-2888
Newmark, N., Hall, W. (1982) Earthquake Spectra and Design. Berkeley, CA: Earthquake Engineering Research Institute (EERI)
Peloso, S., Pavese, A. (2008) Secant modes superposition: A simplified method for seismic assessment of RC frames. u: The 14th World Conference on Earthquake Engineering, Beijing, China, Paper No. 14_05-01-0254
Priestley, M., Calvi, G., Kowalsky, M. (2007) Displacement-based seismic design of structures. Pavia, Italy: IUSS Press
Puthanpurayil, A., Dhakal, R., Carr, A. (2011) Modelling of in-structure damping: A review of the state-of-the-art. u: IX Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, Auckland, New Zealand, Paper no. 091
Ramirez, O.M., Constantinou, M.C., Whittaker, A.S., Kircher, C.A., Chrysostomou, C.Z. (2002) Elastic and Inelastic Seismic Response of Buildings with Damping Systems. Earthquake Spectra, 18(3): 531-547
Smyrou, E., Priestley, N.M.J., Carr, A.J. (2011) Modelling of elastic damping in nonlinear time-history analyses of cantilever RC walls. Bulletin of Earthquake Engineering, 9(5): 1559-1578
Stojnić, N., Kuzović, D. (2016) Proposal of reducing permitted seismic damages on immovable cultural properties (building structures). Građevinski materijali i konstrukcije, vol. 59, br. 4, str. 31-46
Vamvatsikos, D. (2002) Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis. Stanford, USA: Stanford University, PhD Dissertation
Vamvatsikos, D., Cornell, A.C. (2002) Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 31(3): 491-514
Wilson, E. (2002) Three-Dimensional Static and Dynamic Analysis of Structures. Computers and Structures
Yu, H., Lu, D.G., Song, P.Y., Wang, G.Y. (2008) Stochastic incremental dynamic analysis considering random system properties. u: The 14th World Conference on Earthquake Engineering, Beijing, China, Paper No. 14_S15-047