Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:15
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 1 od 15  
Back povratak na rezultate
2021, vol. 10, br. 1, str. 29-36
Sinteza i karakterizacija pH-osetljivih poliuretanskih hidrogelova modifikovanih saharidima - uticaj poliola, umreživača i kiselinskog produživača lanca
aUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet + Univerzitet u Novom Sadu, Tehnološki fakultet
bUniverzitet u Nišu, Tehnološki fakultet, Leskovac
cUniverzitet u Novom Sadu, Tehnološki fakultet
dUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča
eUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Prirodno-matematički fakultet

e-adresamarija.kostic@pr.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Nišu, Tehnološki fakultet, Leskovac) (MPNTR - 451-03-68/2020-14/200133)

Ključne reči: poliuretani; pH-osetljivost; saharidi; nosači terapeutskih sredstava
Sažetak
Na biorazgradivim poliuretanima mogu se zasnivati sistemi za isporuku lekova osetljivi na spoljašnje promene. pH osetljivi poliuretani uspešno se koriste kao intravaginalni prstenovi i specifični sistemi za isporuku lekova za debelo crevo. U ovom radu izvršena je sinteza serije pH-osetljivih poliuretnaskih hidrogelova uz promenu poliolne komponente (poli(etilen-glikol) 400/poli(propilen-glikol) 2000/poli(etilen glikol)-blok-poli(propilen glikol)-blok-poli(etilen glikol) 1100), saharida kao umreživača (melibioza/rafinoza/skrob) i a-hidroksi karboksilnih kiselina kao produživača lanca (dimetilol propionska kiselina/mlečna kiselina). Strukturna karakterizacija sintetisanih poliretanskih hidrogelova vršena je pomoću infracrvene spektroskopije sa Furijeovom transformacijom (FTIR), čime je pokazano da je postignuta reakcija sinteze poliuretana uz uspešno umrežavanje saharidima i da su, uprkos menjanju polaznih komponenti, dobijeni FTIR spektri skoro identični. Stepen bubrenja hidrogelova posmatran je na 25 °C u rastvorima čije su pH vrednosti 4,5 i 7,4. Kod uzoraka sa poliolnom komponentom blok1100 stepen bubrenja u rastvoru pri pH 7,4 (16,09%) bio je i do 9 puta veći nego u rastvoru pri pH 4,5 (1,82%). Uticaji promenjivih parametara na termička svojstva i fazne prelaze PU hidrogelova ispitivani su termogravimetrijskom analizom (TGA) i diferencijalnom skenirajućom kalorimetrijom (DSC). Rezultati su pokazali da variranjem šećerne komponente kao umreživača, kiselinskog produživača lanca i dužine lanaca upotrebljenih poliola može se uticati na navedena svojstva poliuretanskih hidrogelova kao potencijalnih nosača terapeutskih sredstava.
Reference
Bhattacharyya, A., Mukhopadhyay, P., Kundu, P.P. (2014) Synthesis of a Novel pH-Sensitive Polyurethane-Alginate Blend with Poly(ethylene terephthalate) Waste for the Oral Delivery of Protein. Journal of Applied Polymer Science, 16: 131-142
Cherng, J.Y., Hou, T.Y., Shih, M.F., Talsma, H., Hennink, W.E. (2013) Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 450(1-2): 145-162
Clark, M.R., Johnson, T.J., McCabe, R., Clark, J.T., Tuitupou, A., Elgendy, H. (2012) A hot-melt extruded intravaginal ring for the sustained delivery of the antiretroviral microbicide UC781. J Pharm Sci, 101 (2014) 2012-2014
Dayananda, K., He, C., Lee, D.S. (2008) In situ gelling aqueous solutions of pHand temperature-sensitive poly(ester amino urethane)s. Polymer, 49(21): 4620-4625
Desai, S., Thakore, I.M., Sarawade, B.D., Devi, S. (2000) Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal, 36(4): 711-725
EDMQ (2010) European Pharmacopeia. Strasbourg: Council Of Europe-European Directorate for the Quality of Medicines and Healthcare, 7th ed., p. 430-431
Gopalakrishnan, S., Fernando, L.T. (2012) Influence of polyols on properties of bio-based polyurethanes. Bulletin of Materials Science, 35(2): 243-251
Lalwani, R., Desai, S. (2010) Sorption behavior of biodegradable polyurethanes with carbohydrate crosslinkers. Journal of Applied Polymer Science, 115(3): 1296-1305
Lu, Q.W., Hoye, T.R., Macosko, C.W. (2002) Reactivity of common functional groups with urethanes: Models for reactive compatibilization of thermoplastic polyurethane blends. Journal of Polymer Science Part A: Polymer Chemistry, 40(14): 2310-2328
Mahkam, M., Allahverdipoor, M. (2004) Controlled release of biomolecules from pH-sensitive network polymers prepared by radiation polymerization. Journal of Drug Targeting, 12(3): 151-156
Naeem, M., Kim, W., Cao, J., Jung, Y., Yoo, J. (2014) Enzyme/pH dual sensitive polymeric nanoparticles for targeted drug delivery to the inflamed colon. Colloids and Surfaces B: Biointerfaces, 123: 271-278
Park, J. (2016) Preparation and characterization of hydrogels using biopolymers. Journal of Material Science and Engineering, 05(10): 10-48
Reddy, T.T., Kano, A., Maruyama, A., Takahara, A. (2010) Synthesis, Characterization and Drug Release of Biocompatible/Biodegradable Non-toxic Poly(urethane urea)s Based on Poly(e-caprolactone)s and Lysine-Based Diisocyanate. Journal of Biomaterials Science, Polymer Edition, 21(11): 1483-1502
Rueda-Larraz, L., D'arlas, B., Tercjak, A., Ribes, A., Mondragon, I., Eceiza, A. (2009) Synthesis and microstructure-mechanical property relationships of segmented polyurethanes based on a PCL-PTHF-PCL block copolymer as soft segment. European Polymer Journal, 45(7): 2096-2109
Solanki, A., Mehta, J., Thakore, S. (2014) Structure-property relationships and biocompatibility of carbohydrate crosslinked polyurethanes. Carbohydrate Polymers, 110: 338-344
Solanki, A., Sanghvi, S., Devkar, R., Thakore, S. (2016) B-Cyclodextrin based magnetic nanoconjugates for targeted drug delivery in cancer therapy. RSC Advances, 6(101): 98693-98707
Solanki, A., Thakore, S. (2015) Cellulose crosslinked pH-responsive polyurethanes for drug delivery: A-hydroxy acids as drug release modifiers. International Journal of Biological Macromolecules, 80: 683-691
Solanki, A.R., Kamath, B.V., Thakore, S. (2015) Carbohydrate crosslinked biocompatible polyurethanes: Synthesis, characterization, and drug delivery studies. Journal of Applied Polymer Science, 42223(132): 1-12
Sun, X., Wang, H., Jing, Z., Mohanathas, R. (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydrate Polymers, 92(2): 1357-1366
Swann, J.M.G., Bras, W., Topham, P.D., Howse, J.R., Ryan, A.J. (2010) Effect of the Hofmeister anions upon the swelling of a self-assembled pH-responsive hydrogel. Langmuir, 26(12): 10191-10197
Valodkar, M., Thakore, S. (2010) Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications. Carbohydrate Research, 345(16): 2354-2360
Xue, W., Champ, S., Huglin, M.B. (2001) Network and swelling parameters of chemically crosslinked thermoreversible hydrogels. Polymer, 42(8): 3665-3669
Yamaoka, T., Makita, Y., Sasatani, H., Kim, S.I., Kimura, Y. (2000) Linear type azo-containing polyurethane as drug-coating material for colon-specific delivery: Its properties, degradation behavior, and utilization for drug formulation. Journal of Controlled Release, 66(2-3): 187-197
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/savteh2101029K
primljen: 18.03.2020.
prihvaćen: 27.04.2021.
objavljen u SCIndeksu: 10.07.2021.

Povezani članci