Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 2 od 9  
Back povratak na rezultate
2022, vol. 68, br. 3, str. 45-59
Izbor varijabli u funkciji unapređenja modela za predviđanje stečaja
Ključne reči: finansijske varijable; nefinansijske varijable; tržišne varijable; statističke varijable; model za predviđanje stečaja
Sažetak
Značaj ranog otkrivanja verovatnoće pokretanja stečajnog postupka preduzeća navodi autore na razvijanje modela visoke moći predviđanja. Pri tome, autori koriste različite varijable i statističke alate i tehnike. Uticaj privrednog ambijenta i dostupnost podataka ograničava uvođenje određenih varijabli u modele za predviđanje stečaja. Rad ima za cilj da istraži stavove u postojećoj literaturi u vezi selekcije varijabli koje se koriste za razvijanje modela za predviđanje stečaja, njihovih karakteristika, ograničenja i uticaja na moć predviđanja. Nalazi rada pokazuju da su istorijski karakter podataka i konzervativni pristup u finansijskom izveštavanju okrenuli autore na upotrebu nefinansijskih i tržišnih varijabli. Najvećim delom, efikasna tržišta apsorbuju sve eksterne i interne informacije i buduća predviđanja, što se očitava kroz tržišne cene. Međutim, za manje razvijena tržišta, ova pretpostavka ne važi, te je i upotreba tržišnih varijabli upitna. U uslovima povećanog sistemskog rizika makroekonomske varijable mogu biti dobri indikatori za predviđanje verovatnoće pokretanja stečaja. Razvijanje modela za predviđanje stečaja zahteva sagledavanje privrednog ambijenta i biranje varijabli koje odgovaraju postojećim uslovima poslovanja. Sa promenom privrednog ambijenta potrebno je izvršiti i korigovanje modela kako se preciznost predviđanja ne bi smanjila.
Reference
Agarwal, V., Taffler, R. (2008) Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8): 1541-1551
Altman, E.I., Sabato, G. (2013) Modelling credit risk for SMEs: Evidence from the US market. Abacus, 43: 251-279
Altman, E.I., Sabato, G., Wilson, N. (2010) The value of non-financial information in SME risk management. The Journal of Credit Risk, 6(2), 1-33
Balcaen, S., Ooghe, H. (2004) 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. Vlerick Leuven Gent Working Paper Series, 15
Barniv, R., Agarwal, A., Leach, R. (1997) Predicting the outcome following bankruptcy filing: A three-state classification using neural networks. International Journal of Intelligent Systems in Accounting, Finance & Management, 6(3): 177-194
Beaver, W.H., McNichols, M.F., Rhie, J.W.W. (2005) Have Financial Statements Become Less Informative: Evidence from the Ability of Financial Ratios to Predict Bankruptcy. Review of Accounting Studies, 10(1): 93-122
Black, F., Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81(3): 637-654
Bogićević, J., Domanović, V., Krstić, B. (2016) The role of financial and non-financial performance indicators in enterprise sustainability evaluation. Ekonomika, vol. 62, br. 3, str. 1-13
Bradbury, M.E. (1988) The Effect of Analysts' Adjustments in the Context of Loan Assessment. Accounting & Finance, 28(1): 45-55
Brealey, A.R., Myers, C.S., Marcus, J.A. (2001) Fundamentals of Corporate Finance. McGraw-Hill Companies, Inc, Third Edition
Bryant, S.M. (1997) A case-based reasoning approach to bankruptcy prediction modeling. Intelligent Systems in Accounting, Finance & Management, 6(3): 195-214
Camacho, M.M., Campa, D. (2014) Integrity of financial information as a determinant of the outcome of a bankruptcy procedure. International Review of Law and Economics, 37: 76-85
Campbell, J.Y., Hilscher, J., Szilágyi, J. (2008) In Search of Distress Risk. The Journal of Finance, 63(6): 2899-2939
Cao, Y., Liu, X., Zhai, J., Hua, S. (2020) A two-stage Bayesian network model for corporate bankruptcy prediction. International Journal of Finance & Economics, 27 (1), 455-472
Denis, D.J., Denis, D.K., Sarin, A. (1997) Agency Problems, Equity Ownership, and Corporate Diversification. The Journal of Finance, 52(1): 135-160
Du, J.P. (2009) Bankruptcy prediction models: How to choose the most relevant variables?. Available at: https://mpra.ub.uni-muenchen.de/44380
Dumay, J., Bernardi, C., Guthrie, J., Demartini, P. (2016) Integrated reporting: A structured literature review. Accounting Forum, June 2016, Available at: https://www.researchgate.net/publication/304711943_Integrated_reporting_A_ structured_literature_review
Fejer, K.G. (2015) Bankruptcy Prediction: A Survey on Evolution, Critiques, and Solutions. Acta Universitatis Sapientiae, Economics and Business, 3(1): 93-108
Frydman, H., Altman, E.I., Kao, D.L.L. (1985) Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 40(1): 269-291
Gill, J.O. (1994) Financial Basics of Small Business Success. Crisp Publications
Giordani, P., Jacobson, T., von Schedvin, E., Villani, M. (2014) Taking the Twists into Account: Predicting Firm Bankruptcy Risk with Splines of Financial Ratios. Journal of Financial and Quantitative Analysis, 49(4): 1071-1099
Greco, S., Matarazzo, B., Slowinski, R. (1998) A New Rough Set Approach to Evaluation of Bankruptcy Risk. u: Operational Tools in the Management of Financial Risks, Springer US, 121-136
Gupta, J., Barzotto, M., Khorasgani, A. (2018) Does size matter in predicting SMEs failure?. International Journal of Finance & Economics, 23(4): 571-605
Hillegeist, S.A., Keating, E.K., Cram, D.P., Lundstedt, K.G. (2004) Assessing the Probability of Bankruptcy. Review of Accounting Studies, 9(1): 5-34
Jacobson, T., Lindé, J., Roszbach, K. (2013) Firm default and aggregate fluctuations. Journal of the European Economic Association, 11(4): 945-972
Jiang, Y., Jones, S. (2018) Corporate distress prediction in China: A machine learning approach. Accounting & Finance, 58(4): 1063-1109
Kaplan, R., Norton, N. (1992) The Balanced Scorecard: Measures that Drive Performance. Harvard Business Review, 70(1): 71-79
Karels, G.V., Prakash, A.J. (1987) Multivariate Normality and Forecasting of Business Bankruptcy. Journal of Business Finance & Accounting, 14(4): 573-593
Kealhofer, S. (2003) Quantifying Credit Risk I: Default Prediction. Financial Analysts Journal, 59(1): 30-44
Knežević, G., Pavlović, V. (2019) Integrisano izveštavanje u funkciji smanjenja informacione asimetrije. Računovodstvo, 1-2, 122-139
Korol, T. (2013) Early warning models against bankruptcy risk for Central European and Latin American enterprises. Economic Modelling, 31: 22-30
Krstić, B., Bonić, L. (2013) Upravljanje vrednošću za vlasnike. Niš: Ekonomski fakultet
Krstić, B.D., Sekulić, V.M. (2007) Upravljanje performansama preduzeća. Niš: Ekonomski fakultet
Lam, M. (2004) Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis. Decision support systems, 37(4), 567-581
Leshno, M., Spector, Y. (1996) Neural network prediction analysis: The bankruptcy case. Neurocomputing, 10(2), 125-147
Li, L., Faff, R. (2019) Predicting corporate bankruptcy: What matters?. International Review of Economics & Finance, 62: 1-19
Mai, F., Tian, S., Lee, C., Ma, L. (2019) Deep learning models for bankruptcy prediction using textual disclosures. European Journal of Operational Research, 274(2): 743-758
Marais, L.M., Patell, J.M., Wolfson, M.A. (1984) The Experimental Design of Classification Models: An Application of Recursive Partitioning and Bootstrapping to Commercial Bank Loan Classifications. Journal of Accounting Research, 87-114
Merton, R.C. (1974) On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2): 449-470
Mills, J., Yamamura, J.H. (1998) The power of cash flow ratios. Journal of Accountancy, 186(4): 53-53
Muñoz, I.N., Laitinen, E.K., Camacho, M.M., Pascual, E.D. (2020) Does audit report information improve financial distress prediction over Altman's traditional Z -Score model?. Journal of International Financial Management & Accounting, 31(1): 65-97
Nam, C.W., Kim, T.S., Park, N.J., Lee, H.K. (2008) Bankruptcy prediction using a discrete-time duration model incorporating temporal and macroeconomic dependencies. Journal of Forecasting, 27(6): 493-506
Nikolić, N.N. (2014) Kvantifikovanje verovatnoće difolta preduzeća u Srbiji i razvoj internog kreditnog rejtinga za potrebe banke. Univerzitet u Beogradu - Fakultet organizacionih nauka, Doktorska disertacija
Oderda, G., Dacorogna, M., Jung, T. (2003) Credit risk models: Do they deliver their promises: A quantitative assessment. Review of Banking, Finance and Monetary Economics, 32: 177-195
Ohlson, J. (1980) Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18 (1), 109-131
Park, C.S., Han, I. (2002) A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction. Expert Systems with Applications, 23(3), 255-264
Platt, H.D., Platt, M.B. (1991) A note on the use of industry-relative ratios in bankruptcy prediction. Journal of Banking & Finance, 15(6): 1183-1194
Prošić, D. (2014) Financial and nonfinancial variables in the assessment of company credit solvency. Ekonomika, vol. 60, br. 3, str. 173-181
Prošić, D. (2015) Integrisano izveštavanje: Nov pristup korporativnom izveštavanju i upravljanju. Bankarstvo, vol. 44, br. 4, str. 62-87
Reisz, A.S., Perlich, C. (2007) A market-based framework for bankruptcy prediction. Journal of Financial Stability, 3(2): 85-131
Rose, D. (1992) Bankruptcy risk, firm-specific managerial human capital, and diversification. Review of Industrial Organization, 7(1): 65-73
Saunders, A., Allen, L. (2002) Credit risk measurement: New approaches to value at risk and other paradigms. New York: John Wiley & Sons. Inc, 2nd ed
Shumway, T. (2001) Forecasting Bankruptcy More Accurately: A Simple Hazard Model. The Journal of Business, 74(1): 101-124
Stanišić, N., Mizdraković, V., Knežević, G. (2013) Corporate bankruptcy prediction in the Republic of Serbia. Industrija, vol. 41, br. 4, str. 145-159
Tian, S., Yu, Y., Guo, H. (2015) Variable selection and corporate bankruptcy forecasts. Journal of Banking & Finance, 52: 89-100
Tian, S., Yu, Y. (2017) Financial ratios and bankruptcy predictions: An international evidence. International Review of Economics & Finance, 51: 510-526
Tinoco, M.H., Wilson, N. (2013) Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30: 394-419
Tomašević, S.M., Jović, Z.D., Vlaović-Begović, S.M. (2019) Uticaj veličine preduzeća na profitabilnost poljoprivrednih preduzeća u Republici Srbiji. Journal of Agricultural Sciences (Belgrade), vol. 64, br. 3, str. 293-302
Wu, Y., Gaunt, C., Gray, S. (2010) A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics, 6(1): 34-45
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/ekonomika2203045V
primljen: 22.02.2022.
prihvaćen: 19.03.2022.
objavljen u SCIndeksu: 23.10.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka