Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 8 od 8  
Back povratak na rezultate
2014, vol. 61, br. 2, str. 93-101
Kalcijumfosfatni materijali u inženjerstvu koštanog tkiva
aUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča
bUniverzitet u Beogradu, Stomatološki fakultet, Klinika za ortopediju vilica
cUniverzitet u Beogradu, Stomatološki fakultet, Klinika za bolesti zuba i endodonciju
Ključne reči: kalcijum-fosfati; inženjerstvo tkiva; endodoncija; nanomedicina
Sažetak
Kalcijum- fosfati, zajedno s nekim polimerima, najviše su korišćeni materijali u inženjerstvu koštanog tkiva, budući da su po sastavu bliski prirodnoj kosti. Koriste se za ispune različitih oštećenja nastalih usled povreda ili bolesti koštanog tkiva, kao i za pripremu endodontskih mešavina za primenu u stomatologiji. Zbog izuzetnog značaja u stomatologiji, kalcijumfosfatni materijali zaslužuju posebno mesto, pa će im u okviru ovog rada, ali i radova koji će uslediti, biti posvećena posebna pažnja. Radovi su najvećim delom sastavni deo monografije pod nazivom 'Nanomedicina, najveći izazov 21. veka', koja je pobudila veliko interesovanje stručne i profesionalne javnosti usmerene ka različitim oblastima medicine i koju je već dve godine zaredom Studentski kulturni centar, kao jedinu knjigu domaćeg autora, promovisao kao knjigu najužeg izbora. Verujemo da je ta činjenica posebno važna za mlađe istraživače koji se bave problemima inženjerstva tkiva, endodoncijom i implantologijom.
Reference
Abbona, F., Christensson, F., Angela, F.M., Madsen, L.H.E. (1993) Crystal habit and growth conditions of brushite, CaHPO4 - 2H2O. Journal of Crystal Growth, 131(3-4): 331-346
Amjad, Z., ed. (1997) Calcium phosphates in biological and industrial systems. Boston: Kluwer Academic Publishers
Arsic, J., Kaminski, D., Poodt, P., Vlieg, E. (2004) Liquid ordering at the Brushite- { 010 } -water interface. Physical Review B, 69(24):245406
Becker, P. (1989) Phosphates and phosphoric acid: Raw materials technology and economics of the wet process. u: Fertilizer Science and Technology Series, New York: Marcel Dekker, p. 760, 2nd ed
Boanini, E., Gazzano, M., Rubini, K., Bigi, A. (2010) Collapsed Octacalcium Phosphate Stabilized by Ionic Substitutions. Crystal Growth and Design, 10(8): 3612-3617
Chen, S., Schultz, P.G., Brock, A. (2007) An improved system for the generation and analysis of mutant proteins containing unnatural amino acids in Saccharomyces cerevisiae. Journal of molecular biology, 371(1): 112-22
Daculsi, G. (1992) Physicochemical and ultrastructural analysis of bone bioactive interface. Biomater Tissue Int., 10: 296-304
Dickens, B., Schroeder, L.W., Brown, W.E. (1974) Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. Journal of Solid State Chemistry, 10(3): 232-248
Dorozhkin, S.V. (2009) Calcium Orthophosphates in Nature, Biology and Medicine. Materials, 2(2): 399-498
Eanes, E.D., Gillessen, I.H., Posner, A.S. (1965) Intermediate states in the precipitation of hydroxyapatite. Nature, 208(5008): 365-7
Elliott, J.C. (1994) Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Amsterdam: Elsevier
Elliott, S.R. (1991) Medium-range structural order in covalent amorphous solids. Nature, 354(6353): 445-452
Eshtiagh-Hosseini, H., Houssaindokht, M.R., Chahkandhi, M., Youssefi, A. (2008) Preparation of anhydrous dicalcium phosphate, DCPA, through sol-gel process, identification and phase transformation evaluation. Journal of Non-Crystalline Solids, 354(32): 3854-3857
Hench, L.L. (1998) Bioceramics. Journal of the American Ceramic Society, 81(7): 1705-1728
Hench, L.L. (1991) Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 74(7): 1487-1510
Hing, K.A., Annaz, B., Saeed, S., Revell, P.A., Buckland, T. (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. Journal of materials science. Materials in medicine, 16(5): 467-75
Jokanović, V., Jokanović, V. (2012) Keramički I ugljenični biomaterijali. u: Nanomedicina- najveći izazov 21. veka, Beograd: Data Status, p. 7-123
Kanzaki, N., Onuma, K., Treboux, G., Ito, A. (2002) Dissolution kinetics of dicalcium phosphate dihydrate under pseudophysiological conditions. Journal of Crystal Growth, 235(1-4): 465-470
Karageorgiou, V., Kaplan, D. (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27): 5474-91
le Geros, R.Z. (1991) Calcium phosphates in oral biology and medicine. Karger, Switzerland, pp 130
LeGeros, R.Z. (2001) Formation and transformation of calcium phosphates: relevance to vascular calcification. Zeitschrift fur Kardiologie, 90(15): III116-III124
Mathew, M., Takagi, S. (2011) Structures of biological minerals in dental research. Journal of Research of the National Institute of Standards and Technology, 106(6): 1035
Nelson, D.G., McLean, J.D. (1984) High-resolution electron microscopy of octacalcium phosphate and its hydrolysis products. Calcified tissue international, 36(2): 219-32
Onuma, K. (2006) Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Progress in Crystal Growth and Characterization of Materials, 52(3): 223-245
Reid, J.W., Pietak, A., Sayer, M., Dunfield, D., Smith, T.J.N. (2005) Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials, 26(16): 2887-2897
Sayer, M., Stratilatov, A.D., Reid, J., Calderin, L., Stott, M.J., Yin, X., MacKenzie, M., Smith, T.J.N., Hendry, J.A., Langstaff, S.D. (2003) Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials, 24(3): 369-82
Suchanek, W., Yoshimura, M. (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13(1):94-117
Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., Ito, A. (2000) Symmetry of Posner's Cluster. Journal of the American Chemical Society, 122(34): 8323-8324
Tseng, Y., Mou, C., Chan, J.C.C. (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: a mechanistic model for central dark line formation. Journal of the American Chemical Society, 128(21): 6909-18
Wang, L., Nancollas, G.H. (2008) Calcium orthophosphates: Crystallization and dissolution. Chemical reviews, 108(11): 4628-69
Watson, M.L., Robinson, R.A. (1953) Collagen-crystal relationships in bone. II. Electron microscope study of basic calcium phosphate crystals. American journal of anatomy, 93(1): 25-59
White, T.J., ZhiLi, D. (2003) Structural derivation and crystal chemistry of apatites. Acta Crystallographica Section B Structural Science, 59(1): 1-16
Yin, X., Stott, M. (2003) α- and β-tricalcium phosphate: A density functional study. J Phys Rev B, 68: 205205
Zhang, M., Wang, K., Shi, Z., Yang, H., Dang, X., Wang, W. (2010) Osteogenesis of the construct combined BMSCs with β-TCP in rat. Journal of Plastic, Reconstructive and Aesthetic Surgery, 63(2): 227-232
 

O članku

jezik rada: srpski, engleski
vrsta rada: članak
DOI: 10.2298/sgs1402093j
objavljen u SCIndeksu: 06.05.2015.