Metrics

  • citations in SCIndeks: [1]
  • citations in CrossRef:[4]
  • citations in Google Scholar:[]
  • visits in previous 30 days:52
  • full-text downloads in 30 days:48

Contents

article: 9 from 15  
Back back to result list
2017, vol. 21, iss. 2, pp. 91-96
Different methods of equilibrium moisture content determination
aFaculty of Technical Sciences, University 'Mother Teresa' Skopje, Macedonia
bUniversity 'St. Kliment Ohridski', Faculty of Technical Sciences, Bitola, Macedonia
cUniversity of Novi Sad, Faculty of Agriculture

emailmonika.lutovska@unt.edu.mk
Keywords: equilibrium moisture content; inverse method; pear; quince
Abstract
In this paper, a faster and easier way, in comparison with classical methods, to determine the equilibrium moisture content in food materials is shown. The equilibrium moisture content is determined only experimentally, with determination of sorption isotherms. However, the key issue that is a condition for application of certain experimental method for determining of sorption isotherms is the reliability of experimental data obtained for equilibrium moisture content, as well as the time required to determine specific sorption isotherm. Despite numerous advantages of the static gravimetric method, the long time to achieve equilibrium moisture content of the sample is its main drawback and reason why the researchers use other techniques and methods. Out of these reasons came the idea to apply relatively fast and simple method to determine equilibrium moisture content in food materials, based on the values of average material temperature change obtained from experiments including convective drying kinetics. Furthermore, the resulting temperature response from the conducted experiments can be successfully used to determine unknown parameters in the models for calculation of equilibrium moisture content, by applying of inverse approach method that is an essential tool in modeling of heat and mass transfer processes for different food materials.
References
Aktas, T., Ulger, P., Daglioglu, F., Sahin, F.H. (2014) Sorption isotherms and net isosteric heat of sorption for plum osmotically pre-treated with trehalose and sucrose solutions. Bulgarian Journal of Agricultural Science, 20 (3); 515-522
Al-Muhtaseb, A.H., McMinn, W.A.M., Magee, T.R.A. (2004) Water sorption isotherms of starch powders. Journal of Food Engineering, 61(3): 297-307
Barroca, M.J., Guiné, R.P.F., Ferreira, D.M.S., Gonçalves, F.M. (2005) Sorption isotherms of Portuguese varieties of pears. in: 7º Encontro de Química dos Alimentos, 13-16 Abril, Viseu ESAV - IPV / SPQ, P3.8, 7 pag
Blahovec, J., Yanniotis, S. (2009) Modified classification of sorption isotherms. Journal of Food Engineering, 91(1): 72-77
Boudhrioua, M.N.D.M.N., Courtois, F.K.N. (2013) Effect of Osmo-dehydration Conditions on the Quality Attributes of Pears. Journal of Food Processing & Technology, 04(08):
Djendoubi, M.N., Bonazzi, C., Courtois, F., Boudhrioua, N., Kechaou, N. (2011) Moisture desorption isotherms, isosteric heats of desorption and glass transition of fresh pear and apple: Experimental and mathematical investigation. in: 3th European Drying Conference-EuroDrying2011, Palma, Balearic Island, Spain, 26-28 October, 1-4
Falade, K. O., Adetunji, A. I., Aworh, O. C. (2003) Adsorption isotherm and heat of sorption of fresh- and osmo-oven dried plantain slices. European Food Research and Technology, 217(3): 230-234
Gal, S. (1981) Recent developments in techniques for obtaining complete sorption isotherms. in: Water Activity: Influences on Food Quality, Elsevier BV, str. 89-110
Goula, A.M., Karapantsios, T.D., Achilias, D.S., Adamopoulos, K.G. (2008) Water sorption isotherms and glass transition temperature of spray dried tomato pulp. Journal of Food Engineering, 85(1): 73-83
Greenspan, L. (1977) Humidity fixed points of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81A(1): 89
Guiné, R.P.F., Castrct, J.A.A.M. (2002) Experimental Determination and Computer Fitting of Desorption Isotherms of D. Joaquina Pears. Food and Bioproducts Processing, 80(3): 149-154
Kaya, A., Aydin, O., Demirtas, C., Akgün, M. (2007) An experimental study on the drying kinetics of quince. Desalination, 212(1-3): 328-343
Kaymak-Ertekin, F., Gedik, A. (2004) Sorption isotherms and isosteric heat of sorption of grapes, apricots, apples and potatoes. LWT-Food Science and Technology, 37 (4); 429-438
Kiranoudis, C.T., Maroulis, Z.B., Tsami, E., Marinos-Kouris, D. (1993) Equilibrium moisture content and heat of desorption of some vegetables. Journal of Food Engineering, 20(1): 55-74
Lahsasni, S., Kouhila, M., Mahrouz, M., Kechaou, N. (2002) Experimental study and modelling of adsorption and desorption isotherms of prickly pear peel (Opuntia ficus indica). Journal of Food Engineering, 55(3): 201-207
Lahsasni, S., Kouhila, M., Mahrouz, M., Fliyou, M. (2003) Moisture adsorption-desorption isotherms of prickly pear cladode (Opuntia ficus indica) at different temperatures. Energy Conversion and Management, 44(6): 923-936
Lahsasni, S., Kouhila, M., Mahrouz, M. (2004) Adsorption-desorption isotherms and heat of sorption of prickly pear fruit (Opuntia ficus indica). Energy Conversion and Management, 45(2): 249-261
Lutovska, M., Mitrevski, V., Geramitcioski, T., Mijakovski, V. (2014) Review of journals with a particular emphasis on papers in which sorption isotherms were determined. Journal on Processing and Energy in Agriculture, vol. 18, br. 1, str. 25-29
Lutovska, M., Mitrevski, V., Geramitcioski, T., Mijakovski, V., Andreevski, I. (2016) Water activity vs. equilibrium moisture content. Journal on Processing and Energy in Agriculture, vol. 20, br. 2, str. 69-72
Lutovska, M., Mitrevski, V., Pavkov, I., Mijakovski, V., Radojcin, M. (2016) Mathematical modelling of thin layer drying of pear. Chemical Industry and Chemical Engineering Quarterly, 22(2): 191-199
Maroulis, Z.B., Tsami, E., Marinos-Kouris, D., Saravacos, G.D. (1988) Application of the GAB model to the moisture sorption isotherms for dried fruits. Journal of Food Engineering, 7(1): 63-78
Mitrevski, V., Lutovska, M., Mijakovski, V. (2014) Eksperimentalno istrazuvanje na kinetikata na susenje na krusa vo tenok sloj. in: Zbornik na trudovi, Tehnički fakultet Bitola, Bitola
Mitrevski, V., Lutovska, M., Mijakovski, V., Pavkov, I., Mitrevska, C. (2015) Experimental investigation and mathematical modeling of thin layer drying of quince. in: 5th European Drying Conference, 21-23 October, Budapest, Hungary
Mitrevski, V., Lutovska, M., Mijakovski, V., Pavkov, I., Babic, M., Radojcin, M. (2015) Adsorption isotherms of pear at several temperatures. Thermal Science, 19(3): 1119-1129
Moreira, R., Chenlo, F., Torres, M.D., Vallejo, N. (2008) Thermodynamic analysis of experimental sorption isotherms of loquat and quince fruits. Journal of Food Engineering, 88(4): 514-521
Mulet, A., Garcia-Reverter, J., Sanjuan, R., Bon, J. (1999) Sorption Isosteric Heat Determination by Thermal Analysis and Sorption Isotherms. Journal of Food Science, 64(1): 64-68
Noshad, M., Shahidi, F., Mohebbi, M., Mortazavi, S.A. (2013) Desorption isotherms and thermodynamic properties of fresh and osmotic-ultrasonic dehydrated quinces. Journal of Food Processing and Preservation, 37 (5); 381-390
Pavkov, I. (2012) Kombinovana tehnologija sušenja voćnog tkiva. doktorska disertacija
Rahman, M.S., Sablani, S.S. (2009) Water activity measurement methods of foods. in: Rahman M.S. [ed.] Food Properties Handbook, New York: CRC Press, 9-32
Roman, G.N., Urbicain, M.J., Rotstein, E. (1982) Moisture Equilibrium in Apples at Several Temperatures: Experimental Data and Theoretical Considerations. Journal of Food Science, 47(5): 1484-1488
Saravacos, G. D., Tsiourvas, D. A., Tsami, E. (1986) Effect of Temperature on the Water Adsorption Isotherms of Sultana Raisins. Journal of Food Science, 51(2): 381-383
Shivhare, U.S., Arora, S., Ahmed, J., Raghavan, G.S.V. (2004) Moisture adsorption isotherms for mushroom. LWT-Food Science and Technology, 37 (1); 133-137
Spiess, W.E.L., Wolf, W. (1987) Water activity: Theory and applications to food. New York: Marcel Dekker, Inc, Rockland, L.B. and Beuchat, L.R. (eds.)
Tsami, E., Marinos-Kouris, D., Maroulis, Z.B. (1990) Water Sorption Isotherms of Raisins, Currants, Figs, Prunes and Apricots. Journal of Food Science, 55(6): 1594-1597
Veltchev, Z. N., Menkov, N. D. (2000) Desorption isotherms of apples at several temperatures. Drying Technology, 18(4-5): 1127-1137
Weisser, H. (1985) Influence of Temperature on Sorption Equilibria. in: Simatos, D.; Multon, J. L. [ed.] Properties of Water in Foods, Dordrecht: Springer Nature, str. 95-118
Wolf, W., Spiess, W. E. L., Jung, G. (1985) Standardization of Isotherm Measurements (Cost-Project 90 and 90 BIS). in: Simatos, D.; Multon, J. L. [ed.] Properties of Water in Foods, Dordrecht: Springer Nature, str. 661-679
 

About

article language: English
document type: Original Scientific Paper
DOI: 10.5937/JPEA1702091L
published in SCIndeks: 12/06/2017

Related records