Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:17

Sadržaj

članak: 2 od 13  
Back povratak na rezultate
2020, vol. 24, br. 2, str. 57-61
Uticaj mlečno-kiselinske fermentacije na kvalitet pivskog tropa kao hraniva za preživare
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet, Inovacioni centar
bUniverzitet u Beogradu, Tehnološko-metalurški fakultet
cUniverzitet u Novom Sadu, Tehnološki fakultet
dInstitut za kukuruz 'Zemun polje', Beograd-Zemun
eInstitut za prehrambene tehnologije, Novi Sad

e-adresadmladenovic@tmf.bg.ac.rs
Projekat:
Proizvodnja mlečne kiseline i probiotika na otpadnim proizvodima prehrambene i agro-industrije (MPNTR - 31017)
Project #I1/2018 of Scientific and Technological Collaboration of the Republic of Serbia and the PR China

Ključne reči: pivski trop; mlečna kiselina; probiotici; hranivo za preživare
Sažetak
Globalna potražnja za hranom animalnog porekla raste kao posledica kontinuiranog rasta populacije, urbanizacije i porasta prihoda. Kako bi se zadovoljile potrebe tržišta, upotreba nekonvencionalnih hraniva i sporednih agro-industrijskih proizvoda u ishrani životinja postaje uobičajena praksa. U ovom radu je ispitivan uticaj mlečno-kiselinske fermentacije na kvalitet pivskog tropa kao hraniva za preživare. Pivski trop je korišćen kao nosač za imobilizaciju Lactobacillus paracasei NRRL B-4564, što je omogućilo recirkulaciju imobilisane mikrobne biomase u više uzastopnih šaržnih ciklusa. Po završetku poslednje fermentacione šarže, pivski trop sa imobilisanom biomasom je odvojen od fermentacionog medijuma i osušen, nakon čega su ispitivani hemijski sastav i energetski parametri relevantni za njegovu upotrebu u ishrani preživara. Dodatno, analizirana su probiotiska svojstva L. paracasei, kako bi se u potpunosti sagledala mogućnost primene fermentisanog pivskog tropa kao funkcionalnog hraniva. Utvrđeno je da fermentisani pivski trop ima značajno veći sadržaj proteina i pepela, kao i znatno manji sadržaj svih frakcija vlakana u odnosu na nefermentisane uzorke. Takođe, fermentacija je dovela do povećanja sadržaja energije pivskog tropa. Analizom probiotskih karakteristika, utvrđeno je da L. paracasei ima visoku stopu preživljavanja pri pH 2.5 i u prisustvu goveđe žuči, sposobnost autoagregacije, kao i antimikrobnu aktivnost prema Gram-pozitivnim (Bacillus cereus) i Gram-negativnim (Escherichia coli) patogenim bakterijama. Na osnovu fenotipskih karakteristika L. paracasei, kao i povoljnog uticaja mlečno-kiselinske fermentacije na kvalitet pivskog tropa, može se zaključiti da se fermentisani pivski trop sa imobilisanom mikrobnom biomasom može koristiti kao funkcionalno hranivo u obrocima namenjenim ishrani preživara.
Reference
Abdel-Aziz, N.A., Salem, A.Z.M., el-Adawy M.M., Camacho, L.M., Kholif, A.E., Elghandour, M.M.Y., Borhami, B.E. (2015) Biological treatments as a mean to improve feed utilization in agriculture animals: An overview. J Integr. Agric, 14(3), 534-543
Abe, F., Ishibashi, N., Shimamura, S. (1995) Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. Journal of Dairy Science, 78(12), 2838-2846
Arasu, M.V., Kim, D.H., Kim, P.I., Jung, M.W., Ilavenil, S., Jane, M., Lee, K.D., al-Dhabi Naif, A., Choi, K.C. (2014) In vitro antifungal, probiotic and antioxidant properties of novel Lactobacillus plantarum K46 isolated from fermented sesame leaf. Annals of Microbiology, 64(3), 1333-1346
Association of Official Analytical Chemists (2005) Official methods of analysis. Gaithersburg, MD: AOAC International, 18th international edition, Methods 923.03, 930.15, 955.04, 960.39
Bendali, F., Madi, N., Sadoun, D. (2011) Beneficial effects of a strain of Lactobacillus paracasei subsp. paracasei in Staphylococcus aureus-induced intestinal and colonic injury. International Journal of Infectious Diseases, 15(11), e787-e794
Cizeikiene, D., Juodeikiene, G., Paskevicius, A., Bartkiene, E. (2013) Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Control, 31(2), 539-545
Collado, M.C., Meriluoto, J., Salminen, S. (2008) Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5), 1065-1073
Čolović, D., Banjac, V., Rakita, S., Čolović, R., Marjanović-Jeromela, A., Vidosavljević, S., Kokić, B. (2018) By-products of black (Brassica Nigra) and white (Sinapis Alba) mustard seed production as animal feed: Possibilities and hazards. Journal on Processing and Energy in Agriculture, vol. 22, br. 4, str. 188-191
Del, R.B., Sgorbati, B., Miglioli, M., Palenzona, D. (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Letters in Applied Microbiology, 31(6), 438-442
Goering, H.K., van Soest, P.J. (1970) Forage fiber analyses: Apparatus, reagents, procedures, and some applications. Agricultural Research Service, US Department of Agriculture
Jacobsen, C.N., Rosenfeldt, N.V., Hayford, A.E., Møller, P.L., Michaelsen, K.F., Pærregaard, A., Sandström, B., Tvede, M., Jakobsen, M. (1999) Screening of probiotic activities of fortyseven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Applied and Environmental Microbiology, 65(11), 4949-4956
Lema, M., Williams, L., Rao, D.R. (2001) Reduction of fecal shedding of enterohemorrhagic Escherichia coli O157:H7 in lambs by feeding microbial feed supplement. Small Ruminant Research, 39(1), 31-39
Li, X., Xu, W., Yang, J., Zhao, H., Pan, C., Ding, X., Zhang, Y. (2016) Effects of applying lactic acid bacteria to the fermentation on a mixture of corn steep liquor and air-dried rice straw. Animal Nutrition, 2(3), 229-233
Liu, J.J., Liu, X.J., Ren, J.W., Zhao, H.Y., Yuan, X.F., Wang, X.F., Salem, A.Z.M., Cui, Z.J. (2015) The effects of fermentation and adsorption using lactic acid bacteria culture broth on the feed quality of rice straw. Journal of Integrative Agriculture, 14(3), 503-513
Magnusson, J., Schnurer, J. (2005) Antifungal lactic acid bacteria as biopreservatives. Trends in Food Science & Technology, 16(1-3): 70-78
Mishra, V., Prasad, D.N. (2005) Application of in vitro methods for selection of strains as potential probiotics. International Journal of Food Microbiology, 103(1), 109-115
Mladenović, D., Đukić-Vuković, A., Radosavljević, M., Pejin, J., Kocić-Tanackov, S., Mojović, L. (2017) Sugar beet pulp as a carrier for Lactobacillus paracasei in lactic acid fermentation of agro-industrial waste. Journal on Processing and Energy in Agriculture, vol. 21, br. 1, str. 41-45
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., Gerber, P. (2017) Livestock: On our plates or eating at our table?: A new analysis of the feed/food debate. Global Food Security, 14, 1-8
NRC (1996) Nutrient requirements of beef cattle: 1996. Washington: National Academies Press, 8th revised ed
NRC (2001) Nutrient requirements of dairy cattle: 2001. Washington: National Academies Press, 7th revised ed
Pérez, P.F., Minnaard, Y., Disalvo, E.A., de Antoni, G.L. (1998) Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microbiol, 64, 21-26
Ren, D., Li, C., Qin, Y., Yin, R., Du, S., Ye, F., Liu, C., Liu, H., Wang, M., Li, Y., Sun, Y., Li, X., Tian, M., Jin, N. (2014) In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe, 30, 1-10
Salami, S.A., Luciano, G., O'Grady, M.N., Biondi, L., Newbold, C.J., Kerry, J.P., Priolo, A. (2019) Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55
Semenčenko, V., Radosavljević, M., Terzić, D., Milašinović-Šeremešić, M., Mojović, L. (2014) Dried distillers' grains with solubles (DDGS) produced from different maize hybrids as animal feed. Journal on Processing and Energy in Agriculture, vol. 18, br. 2, str. 80-83
Shrivastava, B., Jain, K.K., Kalra, A., Kuhad, R.C. (2014) Bioprocessing of wheat straw into nutritionally rich and digested cattle feed. Scientific Reports, 4, 6360
Stover, M.G., Watson, R.R., Collier, R.J. (2016) Preand probiotic supplementation in ruminant livestock production. u: Probiotics, Prebiotics, and Synbiotics: Bioactive Foods in Health Promotion, Elsevier Inc, 25-36
Šćiban, M., Kukić, D., Ivetić, D., Prodanović, J., Antov, M. (2013) Possibility of using of treated beet shreds from process of bioethanol production for animal feed. Journal on Processing and Energy in Agriculture, vol. 17, br. 3, str. 124-126
Tejero-Sariñena, S., Barlow, J., Costabile, A., Gibson, G.R., Rowland, I. (2012) In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe, 18(5), 530-538
Verón, H.E., di Risio, H., Isla, M.I., Torres, S. (2017) Isolation and selection of potential probiotic lactic acid bacteria from Opuntia ficus-indica fruits that grow in Northwest Argentina. LWT -Food Sci. Technol, 84, 231-240
Villas-Bôas, S.G., Esposito, E., Mitchell, D.A. (2002) Microbial conversion of lignocellulosic residues for production of animal feeds. Animal Feed Science and Technology, 98(1-2), 1-12
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/jpea24-26305
primljen: 27.04.2020.
prihvaćen: 03.06.2020.
objavljen u SCIndeksu: 29.12.2020.

Povezani članci