Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:20
  • preuzimanja u poslednjih 30 dana:20

Sadržaj

članak: 3 od 13  
Back povratak na rezultate
2018, vol. 22, br. 3, str. 133-137
Dvostepena fermentacija za proizvodnju mlečne kiseline na destilerijskoj džibri
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Novom Sadu, Tehnološki fakultet

e-adresadmladenovic@tmf.bg.ac.rs
Projekat:
Proizvodnja mlečne kiseline i probiotika na otpadnim proizvodima prehrambene i agro-industrije (MPNTR - 31017)
Project no. I-1 of Scientific and Technological Collaboration of Republic of Serbia and PR China

Ključne reči: destilerijska džibra; dvostepena fermentacija; mlečna kiselina; Bacillus licheniformis; Lactobacillus paracasei
Sažetak
Iskorišćavanje biomase druge generacije (lignocelulozni materijali i agro-industrijski otpad) predstavlja potencijalno održiv i ekološki prihvatljiv način za proizvodnju mlečne kiseline (MK). Međutim, zbog izrazitih nutritivnih potreba bakterija mlečne kiseline, pre svega u pogledu izvora azota, šećera, minerala i vitamina, proizvodnja MK fermentacijom sirovina druge generacije nije lak zadatak. Cilj ovog rada bio je da se ispita mogućnost dvostepene fermentacije destilerijske krompirove džibre pomoću sojeva Bacillus licheniformis TFUNS i Lactobacillus paracasei NRRL B-4564. U prvoj fazi džibra je inokulisana proteolitičkim sojem B. licheniformis u cilju povećanja sadržaja slobodnog α-amino azota, a time i poboljšanja hemijskog sastava supstrata za mlečno-kiselinsku fermentaciju. U narednoj fazi džibra je podvrgnuta mlečno-kiselinskoj fermentaciji pomoću L. paracasei. Rezultati fermentacije proteolitički tretirane džibre (dvostepena fermentacija) su upoređeni sa parametrima postignutim u fermentaciji netretirane džibre (jednostepena fermentacija). Koncentracija slobodnog α-amino azota u tretiranoj džibri je bila 107% veća u odnosu na početnu vrednost. Povećanje sadržaja slobodnog α-amino azota u medijumu je rezultat aktivnosti proteolitičkih enzima koji katalizuju hidrolizu proteina u džibri. Koncentracija MK postignuta u fermentaciji tretirane džibre je bila 48% veća u odnosu na netretirani medijum. Pored povećanja koncentracije MK, u tretiranoj džibri je uočen i bolji rast L. paracasei, što se može objasniti povoljnijim odnosom sadržaja ugljenika i azota u medijumu, odnosno povoljnijim hemijskim sastavom tretirane džibre za rast bakterija, a time i za proizvodnju MK. Procesom dvostepene fermentacije je omogućeno ekonomično obogaćivanje medijuma lako dostupnim izvorima azota neophodnih bakterijama mlečne kiseline, čime se može delimično ili potpuno izbeći dodavanje skupih, najčešće korišćenih izvora azota.
Reference
Appiah-Nkansah, N.B., Zhang, K., Rooney, W., Wang, D. (2018) Ethanol production from mixtures of sweet sorghum juice and sorghum starch using very high gravity fermentation with urea supplementation. Industrial Crops and Products, 111: 247-253
Barlow, S., i dr. (2007) Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. EFSA Journal, 5(12): 587
Dietz, D., Schneider, R., Papendiek, F., Venus, J. (2016) Leguminose green juice as an efficient nutrient for l (+)-lactic acid production. Journal of Biotechnology, 236: 26-34
Dishisha, T., Ståhl, Å., Lundmark, S., Hatti-Kaul, R. (2013) An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresource Technology, 135: 504-512
Djukić-Vuković, A., Mladenović, D., Radosavljević, M., Kocić-Tanackov, S., Pejin, J., Mojović, L. (2016) Wastes from bioethanol and beer productions as substrates for l (+) lactic acid production - A comparative study. Waste Management, 48: 478-482
Gaggìa, F., Mattarelli, P., Biavati, B. (2010) Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141: S15-S28
Gao, M., Hirata, M., Toorisaka, E., Hano, T. (2006) Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresource Technology, 97(18): 2414-2420
Gao, M., Hirata, M., Toorisaka, E., Hano, T. (2006) Study on acid-hydrolysis of spent cells for lactic acid fermentation. Biochemical Engineering Journal, 28(1): 87-91
Gao, M., Kaneko, M., Hirata, M., Toorisaka, E., Hano, T. (2008) Utilization of rice bran as nutrient source for fermentative lactic acid production. Bioresource Technology, 99(9): 3659-3664
Hetényi, K., Gál, K., Németh, Á., Sevella, B. (2010) Use of sweet sorghum juice for lactic acid fermentation: preliminary steps in a process optimization. Journal of Chemical Technology & Biotechnology, 85(6): 872-877
Kaparaju, P., Serrano, M., Angelidaki, I. (2010) Optimization of biogas production from wheat straw stillage in UASB reactor. Applied Energy, 87(12): 3779-3783
Kumar, C.G., Takagi, H. (1999) Microbial alkaline proteases From a bioindustrial viewpoint. Biotechnology Advances, 17(7): 561-594
Li, Y., Wang, L., Ju, J., Yu, B., Ma, Y. (2013) Efficient production of polymer-grade d-lactate by Sporolactobacillus laevolacticus DSM442 with agricultural waste cottonseed as the sole nitrogen source. Bioresource Technology, 142: 186-191
Li, Z., Han, L., Ji, Y., Wang, X., Tan, T. (2010) Fermentative production of l-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochemical Engineering Journal, 49(1): 138-142
Lie, S. (2013) The ebc-ninhydrin method for determination of free alpha amino nitrogen. Journal of the Institute of Brewing, 79(1): 37-41
Liu, J., Zhou, J., Wang, L., Ma, Z., Zhao, G., Ge, Z., Zhu, H., Qiao, J. (2017) Improving nitrogen source utilization from defatted soybean meal for nisin production by enhancing proteolytic function of Lactococcus lactis F44. Scientific Reports, 7(1):
Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3): 426
Mladenović, D., Pejin, J., Kocić-Tanackov, S., Stefanović, A., Đukić-Vuković, A., Mojović, L. (2016) Potato stillage and sugar beet molasses as a substrate for production of lactic acid and probiotic biomass. Journal on Processing and Energy in Agriculture, vol. 20, br. 1, str. 17-20
Pietrzak, W., Kawa-Rygielska, J., Król, B., Lennartsson, P.R., Taherzadeh, M.J. (2016) Ethanol, feed components and fungal biomass production from field bean ( Vicia faba var. equina ) seeds in an integrated process. Bioresource Technology, 216: 69-76
Poddar, D., Das, S., Jones, G., Palmer, J., Jameson, G.B., Haverkamp, R.G., Singh, H. (2014) Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. International Dairy Journal, 39(1): 1-7
Rivas, B., Moldes, A.B., Domı́nguez, J.M., Parajó, J.C. (2004) Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology, 97(1): 93-98
Thomsen, M.H., Guyot, J.P., Kiel, P. (2007) Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria. Applied Microbiology and Biotechnology, 74(3): 540-546
Vasala, A., Panula, J., Neubauer, P. (2005) Efficient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. Journal of Biotechnology, 117(4): 421-431
Voigt, B., Schroeter, R., Schweder, T., Jürgen, B., Albrecht, D., van Dijl, J.M., Maurer, K., Hecker, M. (2014) A proteomic view of cell physiology of the industrial workhorse Bacillus licheniformis. Journal of Biotechnology, 191: 139-149
Wood, C., Rosentrater, K.A., Muthukumarappan, K. (2014) Techno-economic modeling of a corn based ethanol plant in 2011/2012. Industrial Crops and Products, 56: 145-155
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/JPEA1803133M
objavljen u SCIndeksu: 02.11.2018.