Metrika

  • citati u SCIndeksu: [3]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:3

Sadržaj

članak: 7 od 13  
Back povratak na rezultate
2016, vol. 20, br. 1, str. 17-20
Krompirova džibra i melasa šećerne repe kao supstrat za proizvodnju mlečne kiseline i probiotske biomase
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Novom Sadu, Tehnološki fakultet

e-adresabio.dragana@gmail.com
Projekat:
Proizvodnja mlečne kiseline i probiotika na otpadnim proizvodima prehrambene i agro-industrije (MPNTR - 31017)

Ključne reči: mlečna kiselina; krompirova džibra; melasa; probiotici; hrana za životinje
Sažetak
Destilerijska džibra je lako dostupan industrijski otpad koji nastaje u proizvodnji bioetanola, a zbog svog kompleksnog sastava može biti potencijalno dobar supstrat u mnogim biotehnološkim procesima. Imajući u vidu potrebu za povećanjem postojećih i izgradnjom novih kapaciteta za proizvodnju bioetanola, iskorišćavanje otpadne džibre može biti značajno sa aspekta povećanja konkurentnosti bioetanola kao alternativnog goriva, a može imati i pozitivan uticaj na životnu sredinu. U radu je ispitivana mogućnost iskorišćavanja krompirove džibre i melase šećerne repe kao supstrata za paralelnu proizvodnju mlečne kiseline i bakterijske biomase, pomoću probiotskog soja Lactobacillus rhamnosus ATCC 7469. U šaržnoj fermentaciji na ovom kombinovanom supstratu bez dodatnog obogaćivanja vitaminima, mineralnim materijama ili izvorima azota je postignuta maksimalna produktivnost od 1,11 g L-1 h-1, maksimalan broj vijabilnih ćelija od 1,1×109 CFU mL-1 i koncentracija mlečne kiseline od 18,08 g L-1. Krompirova džibra se može koristiti kao supstrat za rast probiotske biomase i može biti adekvatna zamena za skupe, najčešće korišćene organske izvore azota, kao što su kvaščev ekstrakt ili pepton. Usled nemogućnosti L. rhamnosus ATCC 7469 da podjednako dobro metaboliše sve šećere u melasi šećerne repe za efikasniju proizvodnju mlečne kiseline treba razmotriti druge izvore ugljenika ili izvršiti selekciju Lactobacillus sp. koji efikasno fermentiše saharozu iz melase. Zbog značajnog rasta bakterijske biomase tokom procesa, fermentisani medijum koji zaostaje nakon ekstrakcije mlečne kiseline predstavlja vredan sporedni proizvod fermentacije bogat probiotskom biomasom i betainom koji se može koristiti kao visoko kvalitetna hrana za životinje.
Reference
Abdel-Rahman, M.A., Tashiro, Y., Sonomoto, K. (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 156(4): 286-301
Ampatzoglou, A., Schurr, B., Deepika, G., Baipong, S., Charalampopoulos, D. (2010) Influence of fermentation on the acid tolerance and freeze drying survival of Lactobacillus rhamnosus GG. Biochemical Engineering Journal, 52(1): 65-70
Anadón, A., Rosa, M.M., Aranzazu, M.M. (2006) Probiotics for animal nutrition in the European Union. Regulation and safety assessment. Regulatory Toxicology and Pharmacology, 45(1): 91-95
AOAC (2000) Official Methods of Analysis of AOAC International. Gaithersburg, MD: AOAC International, USA, 17th edn
Castillo, M.F.A., Balciunas, E.M., Salgado, J.M., Domínguez, G.J.M., Converti, A., Oliveira, R.P.de S. (2013) Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1): 70-83
Chan-Blanco, Y., Bonilla-Leiva, A.R., Velazquez, A.C. (2003) Using banana to generate lactic acid through batch process fermentation. Applied Microbiology and Biotechnology, 63(2): 147-152
Choi, S., Song, C.W., Shin, J.H., Lee, S.Y. (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, 28: 223-239
Cui, F., Li, Y., Wan, C. (2011) Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresource Technology, 102(2): 1831-1836
Djukić-Vuković, A., Mladenović, D., Radosavljević, M., Kocić-Tanackov, S., Pejin, J., Mojović, L. (2016) Wastes from bioethanol and beer productions as substrates for l(+) lactic acid production - A comparative study. Waste Management, 48: 478-482
Đukić-Vuković, A., Mojović, L., Nikolić, S., Pejin, J., Kocić-Tanackov, S., Mihajlovski, K. (2013) Distillery stillage as a new substrate for lactic acid production in batch and fed-batch fermentation. Chemical Engineering Transactions, 97-102; 34
Eklund, M., Bauer, E., Wamatu, J., Mosenthin, R. (2005) Potential nutritional and physiological functions of betaine in livestock. Nutrition research reviews, 18(1): 31-48
Jevtić-Mučibabić, R., Grbić, J., Mišljenović, N., Koprivica, G., Kuljanin, T., Radivojević, S. (2011) Nitrogen compounds in the molasses. Journal on Processing and Energy in Agriculture, vol. 15, br. 3, str. 169-172
Kotzamanidis, Ch., Roukas, T., Skaracis, G. (2002) Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology, 18(5): 441-448
Krulj, J., Jevtić-Mučibabić, R., Grbić, J., Brkljača, J., Milovanović, I., Filipčev, B., Bodroža-Solarov, M. (2014) Determination of betaine in sugar beet molasses. Journal on Processing and Energy in Agriculture, vol. 18, br. 4, str. 179-181
Li, Z., Han, L., Ji, Y., Wang, X., Tan, T. (2010) Fermentative production of l-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochemical Engineering Journal, 49(1): 138-142
Lu, Z., He, F., Shi, Y., Lu, M., Yu, L. (2010) Fermentative production of L(+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresource Technology, 101(10): 3642-3648
Miller, G.L. (1959) Use of dinitrosalycilic acid for determining reducing sugars. Analytical Chemistry, 31(3): 426-428
Mojović, L., Pejin, D., Rakin, M., Pejin, J., Nikolić, S., Djukić-Vuković, A. (2012) How to improve the economy of bioethanol production in Serbia. Renewable and Sustainable Energy Reviews, 16(8): 6040-6047
Nancib, A. (2005) Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Bioresource Technology, 96(1): 63-67
Senedese, A.L.C., Maciel, F.R., Maciel, M.R.W. (2015) L-Lactic Acid Production by Lactobacillus rhamnosus ATCC 10863. Scientific World Journal, 2015: 1-6
Simon, O., Vahjen, W., Scharek, L. (2005) Micro-organisms as feed additives-probiotics. Advances in pork Production, (16), 161-167
Tuomola, (née L.E.M., Salminen, S.J. (1998) Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. International Journal of Food Microbiology, 41(1): 45-51
Wilkie, A.C., Riedesel, K.J., Owens, J.M. (2000) Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy, 19(2): 63-102
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
objavljen u SCIndeksu: 15.11.2016.