Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[5]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 4 od 7  
Back povratak na rezultate
2017, vol. 21, br. 1, str. 41-45
Repin rezanac kao nosač za Lactobacillus paracasei u mlečno-kiselinskoj fermentaciji agro-industrijskog otpada
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet
bUniverzitet u Novom Sadu, Tehnološki fakultet

e-adresadmladenovic@tmf.bg.ac.rs
Projekat:
Proizvodnja mlečne kiseline i probiotika na otpadnim proizvodima prehrambene i agro-industrije (MPNTR - 31017)

Ključne reči: mlečna kiselina; mikrobna biomasa; imobilizacija; Lactobacillus paracasei NRRL B-4564; agro-industrijski otpad
Sažetak
Mlečna kiselina (MK) zauzima značajno mesto na svetskom tržištu zbog širokih mogućnosti primene u prehrambenoj, kozmetičkoj, farmaceutskoj i hemijskoj industriji. Poslednjih godina potražnja za MK je znatno povećana zbog njene uloge u proizvodnji biodegradabilnih i biokompatibilnih polimera - polilaktida (PLA). Trenutno se na komercijalnoj skali MK proizvodi fermentacijom jestivih useva, kao što su šećerna repa, kukuruz i kasava. Zbog stalnog porasta globalne potražnje za hranom, ali i u cilju definisanja ekonomski održivog tehnološkog procesa, teži se proizvodnji MK iz alternativnih sirovina, kao što su lignocelulozni materijali, sporedni i otpadni proizvodi različitih industrija. U radu je ispitivana mogućnost korišćenja alternativnog supstrata - tečne krompirove džibre i melase šećerne repe za proizvodnju MK i mikrobne biomase pomoću soja Lactobacillus paracasei NRRL B-4564 imobilisanog na repin rezanac. Parametri ostvareni u imobilisanom sistemu su upoređeni sa parametrima postignutim u šaržnoj fermentaciji sa slobodnim ćelijama. Adsorpcija L. paracasei ostvarena na površinu repinog rezanca je jednostavna i brza metoda imobilizacije koja je omogućila laku separaciju bakterijske biomase iz fermentacionog medijuma i njeno efikasno ponovno korišćenje u tri uzastopna šaržna ciklusa. Ukupna koncentracija MK od 146 g L-1 i prosečna produktivnost od 1,03 g L-1 h-1 dobijena fermentacijom otpadnog supstrata na bazi krompirove džibre i melase šećerne repe sa ćelijama imobilisanim na prirodni lignocelulozni nosač je postignuta bez obogaćivanja supstrata mineralnim materijama i izvorima azota. Repin rezanac koji zaostaje nakon fermentacije zajedno sa imobilisanom mikrobnom biomasom se može koristiti kao visokokvalitetno hranivo za životinje bogato probiotskom biomasom.
Reference
Ačanski, M., Pastor, K., Razmovski, R., Vučurović, V., Psodorov, Đ. (2014) Bioethanol production from waste bread samples made from mixtures of wheat and buckwheat flours. Journal on Processing and Energy in Agriculture, vol. 18, br. 1, str. 40-43
Binczarski, M., Modelska, M., Berlowska, J., Dudkiewicz, M., Karski, S., Witonska, I. (2015) The method of propylene glycol production from waste biomass generated in the sugar factory. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 189-192
Bozell, J.J., Petersen, G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s 'Top 10' revisited. Green Chemistry, 12(4): 539
Chantawongvuti, R. (2010) Immobilization of Lactobacillus salivarius ATCC 11741 on Loofa Sponge Coated with Chitosan for Lactic Acid Fermentation. Journal of Microbiology and Biotechnology
Chronopoulos, G., Bekatorou, A., Bezirtzoglou, E., Kaliafas, A., Koutinas, A.A., Marchant, R., Banat, I.M. (2002) Lactic acid fermentation by Lactobacillus casei in free cell form and immobilised on gluten pellets. Biotechnology Letters, 24(15): 1233-1236
Gaggìa, F., Mattarelli, P., Biavati, B. (2010) Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 141: S15-S28
Genisheva, Z., Mussatto, S.I., Oliveira, J.M., Teixeira, J.A. (2011) Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Industrial Crops and Products, 34(1): 979-985
Harmsen, P.F. H., Hackmann, M.M., Bos, H.L. (2014) Green building blocks for bio-based plastics. Biofuels, Bioproducts and Biorefining, 8(3): 306-324
Hsu, C.H., Chu, Y.F., Argin-Soysal, S., Hahm, T.S., Lo, Y.M. (2004) Effects of surface characteristics and xanthan polymers on the immobilization of Xanthomonas campestris to fibrous matrices. Journal of food science, 69 (9)
Kumar, M.N., Gialleli, A., Masson, J.B., Kandylis, P., Bekatorou, A., Koutinas, A.A., Kanellaki, M. (2014) Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites. Bioresource Technology, 165: 332-335
Miller, G.L. (1959) Use of dinitrosalycilic acid for determining reducing sugars. Analytical Chemistry, 31(3): 426-428
Mladenović, D., Pejin, J., Kocić-Tanackov, S., Stefanović, A., Đukić-Vuković, A., Mojović, L. (2016) Potato stillage and sugar beet molasses as a substrate for production of lactic acid and probiotic biomass. Journal on Processing and Energy in Agriculture, vol. 20, br. 1, str. 17-20
Mojović, L., Đukić-Vuković, A., Nikolić, S., Pejin, J., Kocić-Tanackov, S. (2014) Production of lactic acid and microbial biomass on distillery stillage by using immobilized bacteria. Journal on Processing and Energy in Agriculture, vol. 18, br. 4, str. 141-146
Pejin, J., Radosavljević, M., Kocić-Tanackov, S., Đukić-Vuković, A., Mladenović, D., Mojović, L. (2015) The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus. Journal on Processing and Energy in Agriculture, vol. 19, br. 4, str. 167-170
Pelletier, C., Christine, B., Cayuela, C., Sylvie, B., Bourlioux, P., Bellon-Fontaine,, Marie-Noelle (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Applied and environmental microbiology, 63 (5); 1725-1731
Sin, L.T., Rahmat, Abdul R., Rahman, Wan A.W.A. (2013) Applications of Poly(lactic Acid). u: Handbook of Biopolymers and Biodegradable Plastics, Elsevier BV, str. 55-69
Šćiban, M., Kukić, D., Ivetić, D., Prodanović, J., Antov, M. (2013) Possibility of using of treated beet shreds from process of bioethanol production for animal feed. Journal on Processing and Energy in Agriculture, vol. 17, br. 3, str. 124-126
Velázquez, A.C., Pometto, I.A.L., Ho, K.G., Demirci, A. (2001) Evaluation of plastic-composite supports in repeated fed-batch biofilm lactic acid fermentation by Lactobacillus casei. Applied Microbiology and Biotechnology, 55(4): 434-441
Vučurović, V.M., Razmovski, R.N. (2012) Sugar beet pulp as support for Saccharomyces cerivisiae immobilization in bioethanol production. Industrial Crops and Products, 39: 128-134
Wang, L., Zhao, B., Liu, B., Yu, B., Ma, C., Su, F., Hua, D., Li, Q., Ma, Y., Xu, P. (2010) Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101(20): 7908-7915
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/JPEA1701041M
objavljen u SCIndeksu: 12.06.2017.