- citati u SCIndeksu: [1]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:2
- preuzimanja u poslednjih 30 dana:1
|
|
2009, vol. 13, br. 1, str. 58-63
|
Fazi upravljanje elektrohidrauličkim pozicionim sistemom
Fuzzy control of an electro-hydraulic position system
Projekat: Projekat Ministarstva nauke Republike Srbije, br. TR-20065
Ključne reči: elektro hidraulički sistem; upravljanje položajem; fazi kontroler; gain scheduling; samo učeći fazi kontroler
Sažetak
U radu je prikazan koncept hibridnog fazi kontrolera za primenu u pozicionim elektrohidrauličkim sistemima upravljanja. Takvi sistemi su u suštini nelinearni i generalno teški za upravljanje. Usled promene parametara sistema, korišćenje istih pojačanja izaziva preskok ili čak gubitak stabilnosti sistema. Izrazito nelinearno ponašanje ovih uređaja čini ih idealnim za primenu različitih tipova sofisticiranih kontrolera. Rad prikazuje performance hibridnog kontrolera za elektrohidraulički pozicioni sistem, zasnovanog na dva koncepta fazi kontrolera: a) samoučećem fazi kontroleru (SLFLC), koji sadrži algoritam učenja na osnovu referentnog modela i funkcija osetljivosti i b) fazi 'gain scheduling' kontroleru (FGSC). Prikazana je procedura projektovanja kontrolera i dati su rezultati simulacije, koji pokazuju da hibridni kontroler smanjuje grešku praćenja referentnog signala u odnosu na klasični PID kontroler i samo SLFLC kontroler.
Abstract
The paper presents a hybrid concept of a fuzzy controller for use in electro-hydraulic position control system. Hydraulic position systems are commonly used in various applications. In essence, these kinds of systems are nonlinear in nature and generally difficult to control. With changing system parameters, using of the same gains will cause overshoot or even loss of system stability. The highly non-linear behavior of these devices makes them ideal subjects for applying different types of sophisticated controllers. This article shows a performance of a hybrid controller for electro-hydraulic position control system based on two concepts of fuzzy controllers: a self-learning fuzzy logic (SLFLC) controller, which contains a learning algorithm that utilizes second order reference model and a sensitivity model related to the fuzzy controller parameters; and a position control using fuzzy gain-scheduling (FGSC). The paper also shows the design procedures for the controller and simulation results. The results suggest that using of the hybrid fuzzy controller decreases the error of position reference tracking in relation to the classical PID controller and solely SLFLC controller.
|
|
|
Reference
|
|
Bogdan, S., Kovačić, Z., Krapinec, D. (2007) Sensitivity-based Selflearning Fuzzy Logic Controller as a PLC Super Block. u: Mediterranean Conference on Control & Automation (XVI), July 27-29, Athens, Greece, Proceedings, str. 1-6, T12-009
|
|
Jang, J.S.R. (1992) Self-learning fuzzy controllers based on temporal backpropagation. IEEE Transactions on Neural Networks, 3(5): 714
|
1
|
Jantzen, J. (2000) The self-organizing fuzzy controller technical university of Denmark. Lyngby, Denmark: Department of Automation, January 12, Tech. report no 98-H 869 (soc)
|
5
|
Karadžić, B. (2003) Modelovanje, identifikacija i inteligentno upravljanje hidrauličkim cilindrom. Savremena poljoprivredna tehnika, vol. 29, br. 4, str. 245-250
|
3
|
Karadžić, B. (2007) Tačno modelovanje i simulacija elektrohidrauličkih sistema upravljanja. Časopis za procesnu tehniku i energetiku u poljoprivredi / PTEP, vol. 11, br. 4, str. 166-172
|
3
|
Karadžić, B. (2008) Mogućnosti upravljanja elektro-hidrauličkim sistemom primenom koncepta fazi kontrolera. Časopis za procesnu tehniku i energetiku u poljoprivredi / PTEP, vol. 12, br. 3, str. 144-150
|
1
|
Kovačić, Z., Balenović, M., Bogdan, S. (1998) Sensitivity-based self-learning fuzzy logic control for a servo system. IEEE Control Systems Magazine, vol. 18, br. 3, str. 41-51, June
|
14
|
Merritt, H.E. (1967) Hydraulic control systems. New York, itd: Wiley
|
|
Noskievic, P. (1999) System modeling and identification. Ostrava: Montanex Corp, (in Czech)
|
|
Pham, D.T., Karaboga, D. (1999) Self-tuning fuzzy controller design using genetic optimisation and neural network modelling. Artificial Intelligence in Engineering, 13(2): 119
|
3
|
Procyk, T., Mamdani, E.H. (1979) A linguistic self-organizing process controller. Automatica, br. 5, str. 15-30
|
|
Yousefi, H., Handroos, H., Mattila, J. (2007) Application of fuzzy gain scheduling in position control of a servo hydraulic system with flexible load. International Journal of fluid Power, vol. 8, br. 2, August
|
|
|
|