Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 2 od 6  
Back povratak na rezultate
2013, vol. 67, br. 1, str. 157-164
Cu-Al-Zn sistem proračun termodinamičkih osobina u tečnom stanju
aInstitut za rudarstvo i metalurgiju, Bor
bUniverzitet u Beogradu, Tehnički fakultet u Boru

e-adresalgomidzelovic@yahoo.com
Sažetak
U radu su predstavljeni rezultati termodinamičke analize ternarnog Cu-Al-Zn sistema, koji pripada grupi materijala na bazi bakra sposobnih da pamte oblik. Opšti model rastvora je iskorišćen za proračun termodinamičkih veličina u presecima iz ugla bakra, aluminijuma i cinka sa molskim odnosom druge dve komponente jednakim 1:3, 1:1 i 3:1 u temperaturnom intervalu od 1373 do 2173 K. Vrednosti integralne dopunske Gibsove energije za preseke iz ugla aluminijuma i cinka su negativne sa minimalnim vrednostima do -15 kJ/mol, dok se kod preseka iz ugla bakra Gibsova energija nalazi u granicama od 3 do -15 kJ/mol. Takoće, primećeno je da vrednosti aktivnosti bakra pokazuju izraženo negativno odstupanje od Raultovog zakona za sve ispitivane preseke, dok aktivnost aluminijuma negativno odstupa od Raultovog zakona do xAl = 0,8, nakon čega vrednosti prelaze u područje pozitivnog odstupanja. Aktivnost cinka pokazuje pozitivno odstupanje od Raultovog zakona za sve ispitivane preseke, ali sa porastom sadržaja bakra odstupanje se smanjuje na osnovu čega se može zaključiti da porast sadržaja cinka u leguri negativno utiče na mešljivost. Takoće, na osnovu dobijenih rezultata, pomoću programa MLAB izračunati su ternarni interakcioni parametri. PR Projekat Ministarstva nauke Republike Srbije, br. 172037 i br. 34005.
Reference
*** (2013) MLAB Mathematical Modeling System. www.civilized.com (accessed on Feb, 2013)
Ahmed, M.M. (2006) Corrosion Behaviour of Zn-Al-Cu Alloy in HCl Solution and its Inhibition. Portugaliae Electrochimica Acta, 24(1): 1-22
Breen, J.P., Ross, J.R. (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts. Catalysis Today, 51(3-4): 521-533
Casolco, S.R., Dominguez, G., Sandoval, D., Garay, J.E. (2007) Processing and mechanical behavior of Zn-Al-Cu porous alloys. Materials Science and Engineering: A, 471(1-2): 28-33
Cederstrom, J., Kolomytsev, V., Kozlov, A., Titov, P., Zatulskii, G., Kondratjuk, S. (1999) Evolution of the shape memory parameters during multiple transformation cycles under load in Cu-Zn-Al alloys. Materials Science and Engineering: A, 273-275: 804-808
Chou, K. (1995) A general solution model for predicting ternary thermodynamic properties. Calphad, 19(3): 315-325
Chou, K., Li, W., Li, F., He, M. (1996) Formalism of new ternary model expressed in terms of binary regular-solution type parameters. Calphad, 20(4): 395-406
Cingolani, E., Ahlers, M. (1999) On the origin of the two way shape memory effect in Cu-Zn-Al single crystals. Materials Science and Engineering: A, 273-275: 595-599
Cuniberti, A., Romero, R. (2004) Differential scanning calorimetry study of deformed Cu-Zn-Al martensite. Scripta Materialia, 51(4): 315-320
Gomidželović, L.D., Živković, D., Mihajlović, I.N., Trujić, V.K. (2006) Predicting of thermodynamic properties of ternary Au-In-Sb systems. Archives of Metallurgy and Materials, 51(3): 355-363
Huang, W.M., Ding, Z., Wang, C.C., Wei, J., Zhao, Y., Purnawali, H. (2010) Shape memory materials. Materials Today, 13(7-8): 54-61
Huber, F., Meland, H., Rønning, M., Venvik, H., Holmen, A. (2007) Comparison of Cu-Ce-Zr and Cu-Zn-Al mixed oxide catalysts for water-gas shift. Topics in Catalysis, 45(1-4): 101-104
Janke, L., Czaderski, C., Motavalli, M., Ruth, J. (2005) Applications of shape memory alloys in civil engineering structures-Overview, limits and new ideas. Materials and Structures, 38(5): 578-592
Kang, N., Na, H.S., Kim, S.J., Kang, C.Y. (2009) Alloy design of Zn-Al-Cu solder for ultra high temperatures. Journal of Alloys and Compounds, 467(1-2): 246-250
Kroupa, A., Dinsdale, A.T., Watson, A., Vrestal, J., Vízdal, J., Zemanova, A. (2007) The development of the COST 531 lead-free solders thermodynamic database. JOM, 59(7): 20-25
Li, J., Zhang, W., Gao, L., Gu, P., Sha, K., Wan, H. (1997) Methanol synthesis on Cu-Zn—Al and Cu—Zn—Al—Mn catalysts. Applied Catalysis A: General, 165(1-2): 411-417
Liang, H., Chang, Y.A. (1998) A Thermodynamic Description for the Al-Cu-Zn System. Journal of Phase Equilibria, 19(1): 25-37
Lojen, G., Anžel, I., Kneissl, A.C., Križman, A., Unterweger, U., Kosec, B., Bizjak, M. (2005) Microstructure of rapid solidified Cu-Al-Ni shape memory alloy ribbons. u: Proc. 13th Int. Scientific Conf. on Achievements in Mechanical and Materials Engineering, Gliwice-Wisla, Poland, pp. 399-402
Longauer, S., Makroczy, P., Janák, G., Longauerová, M. (1999) Shape memory effect in a Cu-Zn-Al alloy with dual phase α/β microstructure. Materials Science and Engineering: A, 273-275: 415-419
Martinezflores, E., Negrete, J., Torresvillasenor, G. (2003) Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles. Materials & Design, 24(4): 281-286
Mey, S. (1993) Re-evaluation of the Al-Zn system. Z. Metallkde, 84: 451-455
Miettinen, J. (2002) Thermodynamic description of the CuAlZn and CuSnZn systems in the copper-rich corner. Calphad, 26(1): 119-139
Milosavljević, A., Kostov, A., Todorović, R. (2011) Pametni materijali - legure koje pamte oblik. Bakar, 36(1): 39-44
Pal, H., Pradhan, M. (1995) Microstructure and mechanical property of α-Al-Zn-Cu alloys aged at room temperature. Mater. Trans. JI, M 36: 490-495
Pelegrina, J., Romero, R. (2000) Calorimetry in Cu-Zn-Al alloys under different structural and microstructural conditions. Materials Science and Engineering: A, 282(1-2): 16-22
Pons, J., Masse, M., Portier, R. (1999) Thermomechanical cycling and two-way memory effect induced in Cu-Zn-Al. Materials Science and Engineering: A, 273-275: 610-615
Savaskan, T., Turhal, M. (2003) Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn-Al-Cu alloys. Materials Characterization, 51(4): 259-270
Sebkova, J., Kubicek, L. (1985) Thermodynamic properties of a liquid Zinc-Aluminum-Copper alloy. Kovové Mater, 23, 3-7
Seifert, H.J., Liang, P., Lukas, H.L., Aldinger, F., Fries, S.G., Harmelin, M.G., Faudot, F., Jantzen, T. (2000) Computational phase studies in commercial aluminium and magnesium alloys. Materials Science and Technology, 16(11): 1429-1433
Stipcich, M., Romero, R. (1999) The effect of post-quench aging on stabilization of martensite in Cu-Zn-Al and Cu-Zn-Al-Ti-B shape memory alloys. Materials Science and Engineering: A, 273-275: 581-585
Sugino, S., Hagiwara, H. (1986) Activity of zinc in molten copper and copper-gold alloys. J. Jpn. Inst. Metals, 50 1068-1074
Tolley, A., Condó, A. (1999) Application of the large angle convergent beam electron diffraction technique to the characterisation of martensitic phases in Cu-Zn-Al alloys. Materials Science and Engineering: A, 273-275: 347-351
van Tan, D. (1994) Determination of Thermodynamic Properties of Ternary Al-Cu-Zn Alloys by Electromotive Force Method. Journal of the Electrochemical Society, 141(4): 927
Wei, Z.G., Sandstroröm, R., Miyazaki, S. (1998) Shape-memory materials and hybrid composites for smart systems Part I. Journal of Materials Science, 33(15): 3743-3762
Witusiewicz, V., Hecht, U., Fries, S., Rex, S. (2004) The Ag-Al-Cu systemPart I: Reassessment of the constituent binaries on the basis of new experimental data. Journal of Alloys and Compounds, 385(1-2): 133-143
Xu, H., Tan, S. (1995) Calorimetric investigation of a Cu-Zn-Al alloy with two way shape memory. Scripta Metallurgica et Materialia, 33(5): 749-754
Zhang, J.X., Zheng, Y.F., Luo, Y.C., Zhao, L.C. (1999) Substructure and boundary structure of deformed 18R martensite in a Cu-Zn-Al alloy. Acta Materialia, 47(12): 3497-3506
Zhang, X., Liu, M., Fernandez, J., Guilemany, J. (2000) Effect of small γ-precipitates on the two-way shape memory effect in Cu-Zn-Al alloys. Materials & Design, 21(6): 557-559
Živković, D., Manasijević, D., Mihajlović, I., Živković, Ž. (2006) Proračun termodinamičkih veličina za tečne Ag-In-Sb legure. Journal of the Serbian Chemical Society, vol. 71, br. 3, str. 203-211
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.2298/HEMIND120306041G
objavljen u SCIndeksu: 02.09.2013.

Povezani članci