- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:15
- preuzimanja u poslednjih 30 dana:15
|
|
2019, vol. 69, br. 2, str. 8-16
|
Uticaj cikličnih opterećenja na strukturna oštećenja pogonskih punjenja raketnih motora
Effect of cyclic loads on structural damage of rocket propellant grain
Sažetak
Pogonsko punjenje raketnog motora, direktno liveno ili vezano za komoru ili čvrstu oblogu, izloženo je različitim opterećenjima tokom veka upotrebe. Raketno gorivo je viskoelastični materijal, čije mehaničke osobine značajno zavise od temperature i brzine deformacije. Dejstvo cikličnih opterećenja, pre svega termičkih, na raketni motor na skladištu, može da izazove neželjena oštećenja pogonskog punjenja. Vremenom, posle dugog skladištenja, nagomilana oštećenja mogu da porastu toliko da izazovu lom punjenja. Jedan od načina da se proceni ova pojava je da se odredi zakon akumulacije oštećenja. U ovom primeru, zakon je određen za jedan sastav kompozitnog raketnog goriva na bazi hidroksi-terminiranog polibutadiena (HTPB), izlaganjem njegovih uzoraka različitim dugotrajnim naprezanjima. Pomoću ovog zakona moguće je izračunati verovatnoću loma i vremensku promenu strukturne pouzdanosti pogonskog punjenja, sa ciljem da se proceni vek upotrebe. Pored toga, analiza je pokazala da postoji moguća korelacija zakona akumulacije oštećenja i zatezne čvrstoće. Ova činjenica može da se iskoristi umesto izvođenja dugotrajnog eksperimenta kojim se precizno određuje zakon akumulacije oštećenja.
Abstract
Rocket motor propellant grain, cast or bonded into the motor chamber or solid coating, is exposed to various loads during its service life. Rocket propellant is a viscoelastic material, whose mechanical properties strongly depend on temperature and strain rate. Application of cyclic loads, primarily thermal, onto a rocket motor on the field stock, may cause an undesirable mechanical damage of the grain. Over time, after long storage, it may grow up and lead to the grain failure. One of the ways for evaluation of this phenomenon is to determine a cumulative damage law. In this example, this law has been evaluated for hydroxy terminated polybutadiene (HTPB) composite rocket propellant by exposing a number of specimens to different long term stress levels. Using this law, it is possible to calculate a probability of failure and time distribution of the structural reliability of the grain in order to determine the useful life. Besides, the analysis has shown that there is a possible correlation between tensile strength of the propellant and the cumulative damage law. This fact can be used instead of carrying a longterm experiment for the exact determination of the law.
|
|
|
Reference
|
|
*** (1997) Structural assessment of solid propellant grains: Agard advisory report 350. ISBN 92-836-1063-6
|
1
|
Cerri, S., Bohn, A.M., Menke, K., Galfetti, L. (2009) Ageing behavior of HTPB based rocket propellant formulations. Central European Journal of Energetic Materials, 6(2): 149-165
|
|
Fitzgerald, J.E., Hufferd, W.L. (1971) Handbook for the engineering structural analysis of solid propellants. u: CPIA publication 214
|
2
|
Gligorijevic, N., Rodic, V., Zivkovic, S., Pavkovic, B., Nikolic, M., Kozomara, S., Subotic, S. (2016) Mechanical characterization of composite solid rocket propellant based on HTPB. Chemical Industry, 70(5): 581-594
|
1
|
Gligorijević, N. (2010) Određivanje zakona izdržljivosti HTPB kompozitnog raketnog goriva pri dejstvu konstantnih opterećenja / Cumulative damage law estimation for a HTPB composite rocket propellant. Belgrade, Report VTI-003-01-0029, VTI, Dec
|
3
|
Gligorijević, N. (2010) Istraživanje pouzdanosti i veka upotrebe raketnih motora sa čvrstom pogonskom materijom / Solid propellant rocket motor reliability and service life research. Belgrade: Military Academy, Ph.D. Dissertation
|
|
Gligorijević, N., Etc (2013) Solid propellant rocket motors: Selected topics. Belgrade: MTI, ISBN 978-86-81123-63-8, 2013, ID 199479052
|
|
Gligorijević, N., Jeremić, R., Živković, S., Rodić, V., Dimitrijević, R., Subotić, S. Probabilistic methodology for solid propellant case-bonded grain reliability estimation. u: 4 th International Scientific Conference OTEH 2011, 06-07. October 2011, Belgrade, ISBN 978-86-81123-50-8
|
2
|
Gligorijević, N., Živković, S., Subotić, S., Rodić, V., Gligorijević, I. (2015) Effect of cumulative damage on rocket motor service life. Journal of Energetic Materials, 33(4): 229-259
|
3
|
Gligorijević, N., Rodić, V., Jeremić, R., Živković, S., Subotić, S. (2011) Structural analysis procedure for a case bonded solid rocket propellant grain. Scientific Technical Review, vol. 61, br. 1, str. 3-11
|
4
|
Heller, R.A., Singh, M.P. (1983) Thermal storage life of solid-propellant motors. Journal of Spacecraft and Rockets, 20(2): 144-149
|
|
Heller, R.A., Kamat, M.P., Singh, M.P. (1979) Probability of solid-propellant motor failure due to environmental temperatures. Journal of Spacecraft and Rockets, 16(3): 140-146
|
2
|
Heller, R.A., Singh, M.P., Zibdeh, H. (1985) Environmental effects on cumulative damage in rocket motors. Journal of Spacecraft and Rockets, 22(2): 149-155
|
|
Landel, R.F., Smith, T.L. (1960) Viscoelastic properties of rubberlike composite propellants and filled elastomers. ARS Journal, 31(5): 599-608
|
1
|
Liu, C.T. (1997) Cumulative damage and crack growth in solid propellant. u: Media Pentagon Repor, No A486323
|
9
|
Miner, M.A. (1945) Cumulative damage in fatigue. Journal of Applied Mechanics, 12: 159-164
|
2
|
Moskvitin, V.V. (1972) Soprotivlenie vjazko-uprugih materialov. Moskva: Nauka
|
2
|
NASA (1972) Solid propellant grain design and internal ballistics. u: NASA Space Vehicle Design Criteria, SP-8076
|
2
|
NASA (1973) Solid propellant grain structural integrity analysis. u: NASA Space Vehicle Design Criteria, SP-807
|
|
Rodić, V., Gligorijević, N. (2009) Uniaxial mechanical characterization of the KRG-704 composite rocket propellant: Technical report. Belgrade: VTI, VTI-004-01-0555
|
|
Serbian Republic Hydrometeorological Service (RHMZ) (2008) Meteo Yearbook 1, Climatological data. www.hidmet.gov.rs
|
|
Shiang-Woei, C. (2000) A study of loading history effect for thermoviscoelastic solid propellant grains. Computers and Structures, 77(6): 735-745
|
|
Tormey, J.F., Britton, S.C. (1963) Effect of cyclic loading on solid propellant grain structures. AIAA Journal, 1(8): 1763-1770
|
2
|
Williams, M.L., Blatz, P.J., Schapery, R.A. (1961) Fundamental studies relating to systems analysis of solid propellants. u: Final report GALCIT 101, Pasadena, California: Guggenheim Aeronautical Lab
|
4
|
Williams, M.L. (1964) Structural analysis of viscoelastic materials. AIAA Journal, May: pp.785-798; Calif. Institute of Technology; Pasadena, California
|
3
|
Williams, M.L., Landel, R.F., Ferry, J.D. (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77(14): 3701-3707
|
1
|
Zibdeh, H.S., Heller, R.A. (1989) Rocket motor service life calculations based on the first-passage method. Journal of Spacecraft and Rockets, 26(4): 279-284
|
|
|
|