Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[3]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 9 od 12  
Back povratak na rezultate
2017, vol. 33, br. 75, str. 1696-1702
Antimikrobna svojstva akrilatnih smola za stomatološke proteze impregniranih nanočesticama srebra
aUniverzitet u Nišu, Medicinski fakultet, Katedra Stomatološka protetika
bUniverzitet u Nišu, Tehnološki fakultet, Leskovac

e-adresadr.gligorijevicnikola@gmail.com
Sažetak
Uvod. Poroznost i površinska adherentnost akrilata čine ih kolektorima infektivnog sadržaja iz usne duplje. To se posebno odnosi na hladno polimerizujuće akrilate, čija je struktura manje kompaktna. Cilj rada bio je ispitivanje antimikrobnog dejstva hladno polimerizujućeg akrilata nakon njegove impregnacije nanočesticama srebra. Materijal i metode. Polimernoj komponenti (prahu) hladno polimerizovanog akrilata dodate su različite koncentracije (2%, 5% i 10%) nanočestica srebra, nakon čega su napravljeni uzorci oblika diska promera 10 mm. Kao kontrola poslužio je disk od nanočestica srebra. Antimikrobna aktivnost ispitivana je disk difuzionom metodom na dva česta izazivača infekcija usne duplje - Gram pozitivnoj bakteriji, Staphylococcus aureus ATCC 25923, i gljivici, Candidi albicans ATCC2091. Rezultati su pokazali da uzorak čistog srebra, kao i uzorci polimera sa srebrom, pokazuju antibakterijsku aktivnost. Zona inhibicije rasta Staphylococcus aureusa na hranjivoj podlozi upravno je srazmerna koncentraciji nanočestica srebra u akrilatu. Sa druge strane, ispitivani uzorci nisu ihhibirali rast Candide albicans na hranjivoj podlozi. Zaključak. Nanočestice srebra u akrilatu pokazale su antibakterijsku aktivnost. Proširenje njihovog spektra delovanja, kao i mogućnost eventualne kliničke primene biće predmet budućih istraživanja.
Reference
Allaker, R.P., Memarzadeh, K. (2014) Nanoparticles and the control of oral infections. International Journal of Antimicrobial Agents, 43(2): 95-104
Bürgers, R., Eidt, A., Frankenberger, R., Rosentritt, M., Schweikl, H., Handel, G., Hahnel, S. (2009) The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Archives of Oral Biology, 54(6): 595-601
Bürgers, R., Eidt, A., Frankenberger, R., Rosentritt, M., Schweikl, H., Handel, G., Hahnel, S. (2009) The anti-adherence activity and bactericidal effect of microparticulate silver additives in composite resin materials. Archives of Oral Biology, 54(6): 595-601
Castano, V., Acosta-Torres,, Mendieta,, Nunez-Anita,, Ostrosky (2012) Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures. International Journal of Nanomedicine, 7: 4777-4786
Castro, D.T.D., Holtz, R.D., Alves, O.L., Watanabe, E., Valente, M.L.D.C., Silva, C.H.L.D., Reis, A.C.D. (2014) Development of a novel resin with antimicrobial properties for dental application. Journal of Applied Oral Science, 22(5): 442-449
de Castro, D.T., Valente, M.L.C., da Silva, C.H.L., Watanabe, E., Siqueira, R.L., Schiavon, M.A., Alves, O.L., dos Reis, A.C. (2016) Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Archives of Oral Biology, 67: 46-53
Diaz-Arnold, A.M., Vargas, M.A., Shaull, K.L., Laffoon, J.E., Qian, F. (2008) Flexural and fatigue strengths of denture base resin. Journal of Prosthetic Dentistry, 100(1): 47-51
Jeong, S.H., Yeo, S.Y., Yi, S.C. (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. Journal of Materials Science, 40(20): 5407-5411
Khurana, C., Vala, A.K., Andhariya, N., Pandey, O. P., Chudasama, B. (2013) Antibacterial activity of silver: The role of hydrodynamic particle size at nanoscale. Journal of Biomedical Materials Research Part A, 102(10): 3361-3368
Kiehlbauch, J.A., Hannett, G.E., Salfinger, M., Archinal, W., Monserrat, C., Carlin, C. (2000) Use of the National Committee forClinical Laboratory Standards Guidelines for Disk diffusionsusceptibility testing in New York State Laboratories. Journal of Clinical Microbiology, 38(9); 3341-3348
Kiehlbauch, J.A., Hannett, G.E., Salfinger, M., Archinal, W., Monserrat, C., Carlin, C. (2000) Use of the National Committee forClinical Laboratory Standards Guidelines for Disk diffusionsusceptibility testing in New York State Laboratories. Journal of Clinical Microbiology, 38(9); 3341-3348
Kim, J.S., Kuk, E., Yu, K.N., Kim, J., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C., Kim, Y., Lee, Y., Jeong, D.H., Cho, M. (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1): 95-101
Kwakye-Awuah, B., Williams, C., Kenward, M.A., Radecka, I. (2008) Antimicrobial action and efficiency of silver‐loaded zeolite X. J Appl Microbiol, 104: 1516-1524; 5
Kwakye-Awuah, B., Williams, C., Kenward, M.A., Radecka, I. (2008) Antimicrobial action and efficiency of silver-loaded zeolite X. Journal of Applied Microbiology, 104(5): 1516-1524
Lara, H.H., Romero-Urbina, D.G., Pierce, C., Lopez-Ribot, J.L., Arellano-Jimenez, M.J., Jose-Yacaman, M. (2015) Effect of silver nanoparticles on Candidaalbicans biofilms: An ultrastructural study. J Nanobiotechnol, 13: 91-103
Marsh, P.D., Bradshaw, D.J. (1995) Dental plaque as a biofilm. Journal of Industrial Microbiology, 15(3): 169-175
Marsh, P.D., Martin, M.V. (2010) Oral microbiology. London, UK: Butterworth-Heinemann, 5th ed
Morrison, S., Singh, A., Rousseau, J., Walker, M., Nazarali, A., Crawford, E., Brisson, B., Sears, W.C., Weese, J. S. (2015) Impact of polymethylmethacrylate additives on methicillin-resistant Staphylococcus pseudintermedius biofilm formation in vitro. American Journal of Veterinary Research, 76(5): 395-401
Rodriguez, L.S., Paleari, A.G., Giro, G., de Oliveira, J.N.M., Pero, A.C., Compagnoni, M.A. (2012) Chemical Characterization and Flexural Strength of a Denture Base Acrylic Resin with Monomer 2-Tert-Butylaminoethyl Methacrylate. Journal of Prosthodontics, 22(4): 292-297
Slane, J., Vivanco, J., Rose, W., Ploeg, H., Squire, M. (2015) Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering: C, 48: 188-196
Valentiti, F., Luz, M.S., Boscato, N., Pereira-Cenci, T. (2013) Biofilm formation on denture liners in a randomised controlled in situ trial. J Dent., 41: 420-7
Wady, A.F., Machado, A.L., Zucolotto, V., Zamperini, C.A., Berni, E., Vergani, C.E. (2012) Evaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles. Journal of Applied Microbiology, 112(6): 1163-1172
Yang, S., Zhang, Y., Yu, J., Zhen, Z., Huang, T., Tang, Q., Chu, P.K., Qi, L., Lv, H. (2014) Antibacterial and mechanical properties of honeycomb ceramic materials incorporated with silver and zinc. Materials & Design, 59: 461-465
 

O članku

jezik rada: srpski, engleski
vrsta rada: originalan članak
DOI: 10.5937/asn1775696G
objavljen u SCIndeksu: 05.10.2017.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka