Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 2 od 3  
Back povratak na rezultate
2013, vol. 39, br. 1-2, str. 61-74
Numerička optimizacija procesa u ložištu sa aspekata emisije NOx i efikasnosti energetskog kotla
aUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča
bUniverzitet u Beogradu, Mašinski fakultet

e-adresaivan.tomanovic@vin.bg.ac.rs
Projekat:
Povećanje energetske i ekološke efikasnosti procesa u ložištu za ugljeni prah i optimizacija izlazne grejne površine energetskog parnog kotla primenom sopstvenih softverskih alata (MPNTR - 33018)
Unapređenje industrijskog postrojenja sa fluidizovanim slojem u okviru razvoja tehnologije za energetski efikasno i ekološki opravdano sagorevanje različitih otpadnih materija u fluidizacionom ložištu (MPNTR - 33042)

Ključne reči: matematički model; termički proračun; ložište kotla; ugljeni prah; emisija NOx
Sažetak
Razvijen je matematički model, namenjen za predviđanje procesa u energetskim parnim kotlovima TE Kostolac B tangencijalno loženim sprašenim lignitom. Model je primenjen za numeričku analizu rada kotla radi smanjenja emisije NOx, uz istovremeno održavanje visokog stepena korisnosti kotla. Kompleksni dvofazni tok gas-čestice modeliran je Ojler-Lagranževim pristupom. Povezivanje faza je ostvareno kuplovanjem pomoću PSI-Cell koncepta. Radi ostvarivanja željenih analiza, ugrađen je pod-model formiranja/destrukcije NO, unutar složenog koda za sagorevanje, koji se koristi za predviđanje emisije na izlazu iz ložišta. Modelirani su termički i gorivi NO, kao najuticajniji oksidi azota pri sagorevanju ugljenog praha. Proračunski program je razvijen radi lakše upotrebe od strane inženjerskog osoblja prilikom analiza procesa u kotlovskim postrojenjima. Numeričke simulacije su izvršene za različite radne uslove kotla, prilikom loženja lignitom sa kopa Drmno. Suprotstavljeni zahtevi a smanjenjem emisije i efikasnim sagorevanjem, sa osvrtom na bezbedan rad pregrejača pare često zahtevaju rad kotla u uskim granicama radnih parametara, koji su utvrđeni pomoću termičkog proračuna kotla.
Reference
Belošević, S., i dr. (2008) A numerical study of a utility boiler tangentially-fired furnace under different operating conditions. Fuel, 87(15-16): 3331-3338
Belošević, S., i dr. (2009) Numerical Prediction of Pulverized Coal Flame in Utility Boiler Furnaces. Energy & Fuels, 23(11): 5401-5412
Belošević, S., i dr. (2012) Numerical Analysis of NO x Control by Combustion Modifications in Pulverized Coal Utility Boiler. Energy & Fuels, 26(1): 425-442
Belošević, S., Sijerčić, M., Stefanović, P. (2008) A numerical study of pulverized coal ignition by means of plasma torches in air-coal dust mixture ducts of utility boiler furnaces. International Journal of Heat and Mass Transfer, 51(7-8): 1970-1978
Belošević, S. (2003) Prilog modeliranju procesa u ložištu kotla za sagorevanje ugljenog praha. Beograd, Doktorska disertacija
Belošević, S., i dr. (2006) Three-dimensional modeling of utility boiler pulverized coal tangentially fired furnace. International Journal of Heat and Mass Transfer, vol. 49, br. 19-20, str. 3371-3378
Chen, Z., Li, Z., Zhu, Q., Jing, J. (2011) Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner. Energy, 36(2): 709-723
Chui, E.H., Gao, H. (2010) Estimation of NOx emissions from coal-fired utility boilers. Fuel, 89(10): 2977-2984
Coelho, L.M.R., Azevedo, J.L.T., Carvalho, M.G. (1997) Application of a global NOx formation model to a pulverized coal fired boiler with gas reburning. u: Technologies and Combustion for a Clean Environment, 4th International Conference, Lisbon, Portugal, July 7-10, 1997, Proceedings, Paper 9.4, 1/8-8/8
de Soete, G. (1975) Overall reaction rates of NO and N2 formation from fuel nitrogen. Symposium (International) on Combustion, 15(1): 1093-1102
Diez, L.I., Cortes, C., Pallares, J. (2008) Numerical investigation of NOx emissions from a tangentially-fired utility boiler under conventional and overfire air operation. Fuel, 87(7): 1259-1269
Eaton, A.M., Smoot, L.D., Hill, S.C. (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Progress in Energy and Combustion Science, 25 (4): 387-436
Fan, J., i dr. (1999) Modeling of Combustion Process in 600 MW Utility Boiler Using Comprehensive Models and Its Experimental Validation. Energy & Fuels, 13(5): 1051-1057
Hashimoto, N., i dr. (2007) A Numerical Analysis of Pulverized Coal Combustion in a Multiburner Furnace. Energy & Fuels, 21(4): 1950-1958
He, R., i dr. (2004) Analysis of low NO emission in high temperature air combustion for pulverized coal. Fuel, 83(9): 1133-1141
Hill, S.C., Smoot, L.D. (2000) Modeling of nitrogen oxides formation and destruction in combustion systems. Progress in Energy and Combustion Science, 26(4-6): 417-458
Hottel, H., Sarofim, A. (1967) Radiative transfer. New York, itd: McGraw-Hill
Karampinis, E., i dr. (2012) Numerical investigation Greek lignite/cardoon co-firing in a tangentially fired furnace. Applied Energy, 97: 514-524
Karpenko, E.I., Messerle, V.E., Ustimenko, A.B. (2007) Plasma-aided solid fuel combustion. Proceedings of the Combustion Institute, 31(2): 3353-3360
Li, K., Thompson, S., Peng, J. (2004) Modelling and prediction of NOx emission in a coal-fired power generation plant. Control Engineering Practice, 12(6): 707-723
Lockwood, F.C., Romo-Millares, C.A. (1992) Mathematical Modeling of Fuel NO Emissions from PF Burners. Journal of the Institute of Energy, 144-152; 65
Makovička, J. (2008) Mathematical Model of Pulverized Coal Combustion. Prague, Czech Republic: Czech Technical University, PhD thesis
Modlinski, N. (2010) Computational modeling of a utility boiler tangentially-fired furnace retrofitted with swirl burners. Fuel Processing Technology, 91(11): 1601-1608
Patankar, S. (1980) Numerical Heat Transfer and Fluid Flow. Washington, USA: Hemisphere Publ
Sijerčić, M. (1998) Matematičko modeliranje kompleksnih turbulentnih transportnih procesa. Beograd: Jugoslovensko društvo termičara i Institut za nuklearne nauke Vinča
Stone, H.L. (1968) Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM Journal on Numerical Analysis, 5(3): 530-558
Straka, R., Beneš, M. (2010) Numerical Simulation of NO Production in Air-Staged Pulverized Coal Fired Furnace. Open Thermodynamics Journal, 4(1): 27-35
Tian, Z.F., i dr. (2010) Numerical Modeling of Victorian Brown Coal Combustion in a Tangentially Fired Furnace. Energy & Fuels, 24(9): 4971-4979
Xu, M., Azevedo, J.L.T., Carvalho, M.G. (2000) Modelling of the combustion process and NOx emission in a utility boiler. Fuel, 79(13): 1611-1619
Zeng, L., i dr. (2010) Numerical Simulation of Combustion Characteristics and NO x Emissions in a 300 MW e Utility Boiler with Different Outer Secondary-Air Vane Angles. Energy & Fuels, 24(10): 5349-5358
Zheng, C., i dr. (2002) Numerical and experimental investigations on the performance of a 300 MW pulverized coal furnace. Proceedings of the Combustion Institute, 29(1): 811-818
Zhou, H., i dr. (2011) Numerical Simulation of the NO x Emissions in a 1000 MW Tangentially Fired Pulverized-Coal Boiler: Influence of the Multi-group Arrangement of the Separated over Fire Air. Energy & Fuels, 25(5): 2004-2012
 

O članku

jezik rada: srpski
vrsta rada: naučni članak
objavljen u SCIndeksu: 14.12.2015.