Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:22
  • preuzimanja u poslednjih 30 dana:21

Sadržaj

članak: 6 od 6  
Back povratak na rezultate
2015, vol. 65, br. 3, str. 3-7
Predviđanje osetljivosti na udar aluminiziranih eksplozivnih smeša korišćenjem metode response surface methodology
aUniverzitet odbrane, Vojna akademija, Beograd
bSerbian Armed Forces, Belgrade

e-adresazoran.bajic@va.mod.gov.rs
Ključne reči: eksplozivna smeša; brizantni eksplozivi; aluminizirani eksplozivi; osetljivost eksploziva; osetljivost na udar; metoda procene
Sažetak
Mogućnost predviđanja osetljivosti na udar na osnovu fizičko-hemijskih osobina i elementarnog sastava eksploziva doprinosi brzini procesa istraživanja eksplozivnih materija, smanjuje troškove i poboljšava pirotehničku bezbednost. U ovom radu se analiziraju postojeće metode za predviđanje osetljivosti na udar i uvodi se metodologija odzivnih površina (response surface methodology - RSM). Nova metoda omogućava kreiranje korelacije između osetljivosti na udar i dve osnovne osobine eksplozivnih materija: brzine detonacije i toplote detonacije. Izračunate vrednosti osetljivosti na udar su upoređene sa eksperimentalnim koje su preuzete iz literature sa ciljem ocene ovog pristupa.
Reference
*** (1981) State Standard GOST: Explosive substances. Methods of determining impact sensitivity. Moscow: Standartov, 4545-80; in Russian
*** (1999) NATO Standardization agreement (STANAG) on explosives, impact sensitivity tests. Brussels, No. 4489, Ed. 1
Cho, S.G., NO, K.T., Goh, E.M., Kim, J.K., Shin, J.H., Joo, Y.D., Seong, S. (2005) Optimization of neural networks architecture for impact sensitivity of energetic molecules. Bull. Korean Chem. Soc, 26, pp. 399-408
Denisaev, A.A., Korsunskii, B.L., Pepekin, V.I., Matyushin, Yu. N. (2010) Impact sensitivity of liquid explosives. Combustion, Explosion, and Shock Waves, 46(1): 74-80
Department of the Army Technical Manual (1984) Military explosives. Headquarters, Department of the Army
Golubev, V.K. (2011) Influence of structural and energetic factors on impact sensitivity of aromatic nitro compounds. u: Proceedings of 14th Symposium on New Trends in Research of Energetic Materials, Pardubice, Czech Republic
Ihaka, R., Gentleman, R.R. (1996) A language for data analysis and graphics. J Comput. Graph. Stat, 5, str. 299-314
Kamlet, M.J. (1976) The relationship of impact sensitivity with structure of organic high explosives. I. Polynitroaliphatic explosives. u: Proc. 6th Symp. (Int.) on Detonation (Washington, August 24-27), San Diego, pp. 276-288
Kamlet, M.J., Adolph, H.G. (1979) The relationship of Impact Sensitivity with Structure of Organic High Explosives. II. Polynitroaromatic explosives. Propellants, Explosives, Pyrotechnics, 4(2): 30-34
Keshavarz, M., Pouretedal, H. (2005) Simple empirical method for prediction of impact sensitivity of selected class of explosives. Journal of Hazardous Materials, 124(1-3): 27-33
Keshavarz, M.H. (2007) Prediction of impact sensitivity of nitroaliphatic, nitroaliphatic containing other functional groups and nitrate explosives. Journal of Hazardous Materials, 148(3): 648-652
Keshavarz, M.H. (2013) A New General Correlation for Predicting Impact Sensitivity of Energetic Compounds. Propellants, Explosives, Pyrotechnics, 38(6): 754-760
Keshavarz, M.H., Jaafari, M. (2006) Investigation of the Various Structure Parameters for Predicting Impact Sensitivity of Energetic Molecules via Artificial Neural Network. Propellants, Explosives, Pyrotechnics, 31(3): 216-225
Mader, C.L. (1998) Numerical modeling of explosives and propellants. New York: CRC Press
Mullay, J. (1987) A Relationship between Impact Sensitivity and Molecular Electronegativity. Propellants, Explosives, Pyrotechnics, 12(2): 60-63
Mullay, J. (1987) Relationships between Impact Sensitivity and Molecular Electronic Structure. Propellants, Explosives, Pyrotechnics, 12(4): 121-124
Myers, R.H., Montgomery, C.M. (1995) Response Surfaces Methodology: Process and Product Optimization Using Designed Experiments. New York: Wiley
Nefati, H., Cense, J., Legendre, J. (1996) Prediction of the Impact Sensitivity by Neural Networks. Journal of Chemical Information and Computer Sciences, 36(4): 804-810
Orlenko, L.P. (2004) Fizika vzriva. Moscow: Fizmatlit
Prana, V., Fayet, G., Rotureau, P., Adamo, C. (2011) Prediction of impact sensitivity of nitro energetic compounds using QSPR approaches. u: Proc. 14th Sem. (Int.) on New Trends in Research of Energetic Materials (Pardubice, April 13-15, 2011), Czech Republic, pp. 305-315
Prana, V., Fayet, G., Rotureau, P., Adamo, C. (2012) Development of validated QSPR models for impact sensitivity of nitroaliphatic compounds. Journal of Hazardous Materials, 235-236: 169-177
Rice, B.M., Hare, J.J. (2002) A 4uantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. A, 106, pp. 1770-1783
Smirnov, A., Voronko, O., Korsunsky, B., Pivina, T. (2013) Impact sensitivity investigations of individual explosives. u: Proceedings of 16th Symposium on New Trends in Research of Energetic Materials, Pardubice, Czech Republic
Šelešovsky, J., Pachman, J. (2010) Probit analysis - a promising tool for evaluation of explosive's sensitivity. Central European Journal of Energetic Materials, Vol. 7, No. 3, pp. 269-278
Škare, D., Sućeska, M. (1998) Molecular mass/density and oxygen content/sensitivity relationships. Croat. Chem. Acta, 71 (3), pp. 765-776
Vadhe, P.P., Pawar, R.B., Sinha, R.K., Asthana, S.N., Rao, A. S. (2008) Cast aluminized explosives (review). Combustion, Explosion, and Shock Waves, 44(4): 461-477
Wang, R., Jiang, J., Pan, Y., Cao, H., Cui, Y. (2009) Prediction of impact sensitivity of nitro energetic compounds by neural network based on electrotopological-state indices. Journal of Hazardous Materials, 166(1): 155-186
Zukas, J.A., Walters, W.P., ur. (1998) Explosive effects and applications. New York: Springer-Verlag
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/STR1503003B
objavljen u SCIndeksu: 05.04.2016.
Creative Commons License 4.0

Povezani članci