- citati u SCIndeksu: [2]
- citati u CrossRef-u:[5]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:16
- preuzimanja u poslednjih 30 dana:4
|
|
2017, vol. 21, br. 1, str. 9-12
|
Sinteza i karakterizacija biopolimernih filmova
Biopolymer films synthesis and characterisation
Projekat: Osmotska dehidratacija hrane - energetski i ekološki aspekti održive proizvodnje (MPNTR - 31055)
Sažetak
U ovom radu sintetisana su tri biopolimerna filma različitog porekla, adekvatnim metodama sinteze. Sintetisani su zeinski i želatinski filmovi (proteinski), kao i skrobni film (polisaharidni). Skrobni i želatinski filmovi su dobijeni iz vodenog filmogenog rastvora, dok je zeinski film dobijen iz alkoholnog rastvora. Dobijeni filmovi su okarakterisani određivanjem mehaničkih i fizičko-hemijskih osobina: debljina, zatezna jačina i izduženje pri kidanju, sadržaj vlage, bubrenje i rastvaranje. Želatinski filmovi su se pokazali kao najčvršći (zatezna jačina 84 N/15mm), dok su zeinski bili najelastičniji (izduženje pri kidanju 41,6%). Izmereni sadržaj vlage je veći kod uzoraka skrobnih filmova u odnosu na zeinske i želatinske, što je posledica načina sinteze i hidrofilne prirode polisaharidnih filmova. Vrednost stepena bubrenja filma iznosila je 22,5% kod uzoraka zeinskog filma, a 90,9% kod uzoraka želatinskog filma, dok su najviše prosečne vrednosti zabeležene kod uzoraka skrobnog filma i iznosile su 840,6%. Skrobni filmovi su najrastvorljiviji u vodi (stepen rastvorljivosti 36,5%), dok je vrednost stepena rastvorljivosti kod zeinskih iznosila 27,9%, a kod želatinskih je bila najmanja i iznosila je 11,8%. Na osnovu dobijenih rezultata konstatuju se različite osobine ispitivanih biopolimernih filmova, koje su posledica različite strukture polazne sirovine, kao i načina sinteze. Sve karakteristike filmova moguće je unaprediti optimizacijom sastava filma, kao i sintezom kompozitnih ili laminiranih filmova u zavisnosti od željene primene.
Abstract
In this study, three biopolymer films were synthesized: zein (protein), gelatin (protein), and starch (polysaccharide) films and characterized by determining mechanical and physico-chemical properties. Gelatin films proved to be the strongest (tensile strength 84 N/15 mm), while the zein were most flexible (elongation at break 41.6 %). Moisture content was higher in starch films, which is a result of the hydrophilic nature of the polysaccharide films. Swelling degree was 22.5 % for zein, 90.9 % for gelatin, while the highest average value was recorded in starch film samples (840.6 %). Starch films had highest value of solubility degree (36.5 %), while zein film had 27.9 % and gelatin film had 11.85 %.Obtained characterization results are consequences of the different structure of the raw materials and synthesis routes. All undesirable characteristics could be improved by optimizing the composition of the film, as well as synthesis of composite/laminated films.
|
|
|
Reference
|
|
Bertuzzi, M.A., Castro, V.E.F., Armada, M., Gottifredi, J.C. (2007) Water vapor permeability of edible starch based films. Journal of Food Engineering, 80(3): 972-978
|
1
|
Bourtoom, T. (2009) Protein edible film: Properties enhancement. International Food Research Journal, 16 (1); 1-9
|
|
Bourtoom, T., Chinnan, M.S. (2009) Improvement of Water Barrier Property of Rice Starch-chitosan Composite Film Incorporated with Lipids. Food Science and Technology International, 15(2): 149-158
|
1
|
Cuq, B., Gontard, N., Guilbert, S. (1998) Proteins as Agricultural Polymers for Packaging Production. Cereal Chemistry Journal, 75(1): 1-9
|
1
|
Embuscado, M.E., Huber, K.C. (2009) Edible films and coatings for food applications. Springer Science
|
|
Fabra, M.J., Talens, P., Chiralt, A. (2010) Water sorption isotherms and phase transitions of sodium caseinate-lipid films as affected by lipid interactions. Food Hydrocolloids, 24(4): 384-391
|
5
|
Falguera, V., Quintero, J.P., Jiménez, A., Muñoz, J.A., Ibarz, A. (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends in Food Science & Technology, 22(6): 292-303
|
1
|
Ganji, F., Vasheghani-Farahani, S., Vasheghani-Farahani, E. (2010) Theoretical Description of Hydrogel Swelling: A Review. Iranian Polymer Journal, 19 (5); 375-398
|
|
Garcia, M., Pinotti, A., Martino, M., Zaritzky, N. (2004) Characterization of composite hydrocolloid films. Carbohydrate Polymers, 56(3): 339-345
|
2
|
Han, J.H. (2014) Innovations in food packaging. USA: Elsevier-Academic Press
|
2
|
Krochta, J.M. (2002) Proteins as raw materials for films and coatings: Definitions, current status and opportunities. u: Genadios A. [ur.] Protein-based films and coatings, Boca Raton: CRC Press
|
8
|
Lazić, V., Novaković, D. (2010) Ambalaža i životna sredina. Novi Sad: Tehnološki fakultet
|
4
|
Lazić, V.L., Gvozdenović, J.J. (2007) Biopolimeri kao ambalažni materijali. Prehrambena industrija - mleko i mlečni proizvodi, vol. 18, br. 1-2, str. 19-22
|
|
Ludwiczak, S., Mucha, M. (2010) Modeling of water sorption isotherms of chitosan blends. Carbohydrate Polymers, 79(1): 34-39
|
1
|
Mathew, S., Brahmakumar, M., Abraham, T. E. (2006) Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films. Biopolymers, 82(2): 176-187
|
|
McKeen, L.W. (2013) Introduction to Use of Plastics in Food Packaging. u: Plastic Films in Food Packaging, Elsevier BV, str. 1-15
|
|
Mehyar, G.F., Han, J.H. (2006) Physical and Mechanical Properties of High-amylose Rice and Pea Starch Films as Affected by Relative Humidity and Plasticizer. Journal of Food Science, 69(9): E449-E454
|
|
Mikkonen, K.S., Rita, H., Helén, H., Talja, R.A., Hyvönen, L., Tenkanen, M. (2007) Effect of Polysaccharide Structure on Mechanical and Thermal Properties of Galactomannan-Based Films. Biomacromolecules, 8(10): 3198-3205
|
1
|
Nguyen, M.X.H. (2012) Characterization of allergenic and antimicrobial properties of chitin and chitosan and formulation of chitosan-based edible film for instant food casing. Melbourne, Australia: RMIT University-School of Applied Sciences
|
|
Park, H.J., Byun, Y.J., Kim, Y.T., Whiteside, W. S., Bae, H.J. (2014) Processes and Applications for Edible Coating and Film Materials from Agropolymers. u: Innovations in Food Packaging, Elsevier BV, str. 257-275
|
|
Pérez-Gago, M.B., Rhim, J. (2014) Edible Coating and Film Materials. u: Innovations in Food Packaging, Elsevier BV, str. 325-350
|
3
|
Popović, S., Peričin, D., Vaštag, Ž., Lazić, V., Popović, L. (2012) Pumpkin oil cake protein isolate films as potential gas barrier coating. Journal of Food Engineering, 110(3): 374-379
|
1
|
Rhim, J.W., Shellhammer, T.H. (2005) Lipid-based edible films and coatings. u: Innovations in Food Packaging, Elsevier BV, str. 362-383
|
1
|
Senna, M.M., Salmieri, S., El-naggar, A., Safrany, A., Lacroix, M. (2010) Improving the Compatibility of Zein/Poly(vinyl alcohol) Blends by Gamma Irradiation and Graft Copolymerization of Acrylic Acid. Journal of Agricultural and Food Chemistry, 58(7): 4470-4476
|
2
|
Souza, A.C., Goto, G.E.O., Mainardi, J.A., Coelho, A.C.V., Tadini, C.C. (2013) Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2): 346-352
|
2
|
Šuput, D., Lazić, V., Pezo, L., Markov, S., Vaštag, Ž., Popović, L., Radulović, A., Ostojić, S., Zlatanović, S., Popović, S. (2016) Characterization of Starch Edible Films with Different Essential Oils Addition. Polish Journal of Food and Nutrition Sciences, 66(4):
|
1
|
Šuput, D., Lazić, V., Pezo, L., Radulović, A., Popović, S., Hromiš, N., Bulut, S. (2015) Structural changes in starch during starch based edible films synthesis. Journal on Processing and Energy in Agriculture, vol. 19, br. 3, str. 139-142
|
2
|
Šuput, D.Z., Lazić, V.L., Jelić, A., Lević, L.B., Pezo, L.L., Hromiš, N.M., Popović, S. (2013) The effect of sorbitol content on the chracteristics of starch based edible films. Journal on Processing and Energy in Agriculture, vol. 17, br. 3, str. 106-109
|
1
|
Tharanathan, R.N. (2003) Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol, 14
|
|
|
|