- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:0
|
|
2020, vol. 9, br. 1, str. 58-64
|
Kinetika sorpcije disperzne boje na modifikovani polietilen tereftalat
Kinetics of the adsorption of textile disperse dye to modified polyethylene terephthalate
aUniverzitet u Nišu, Srbija bUniverzitet u Nišu, Tehnološki fakultet, Leskovac, Srbija cUniverzitet u Novom Sadu, Tehnološki fakultet, Srbija
e-adresa: izida50@gmail.com
Projekat: The funds for the realization of this scientific work were provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia.
Sažetak
Članak obrađuje problematiku vezanu za kinetiku procesa bojenja modifikovanog polietilen tereftalata disperznom bojom. Modifikacija vlakana obuhvata obradu vodenim rastvorom gašenog kreča uz istovremeno delovanje ultrazvučnih talasa. Bojenje vlakana je izvršeno diskontinualno-šaržni proces, uz promenu početne koncentracije boje (20 - 120 mg dm-3) i vremena bojenja (5 - 60 min). Korišćeno je nekoliko kinetičko reakcionih (Pseudo prvi, Avrami i Modified Freundlich) i difuzionih (Weber&Morris, Boyd i Film diffusion) modela za testiranje eksperimentalnih podataka iz procesa bojenja. Konstatovano je da bojenje modifikovanih vlakana daje bolje rezultate od bojenja nemodifikovanog poliestra, pri istim uslovima. Sa porastom početne koncentracije boje smanjuje se stepen iscrpljenja (76,2 - 57,4 %, za ravnotežno vreme bojenja) a raste apsorpcija disperzne boje po jedinici mase vlakana (1,5 - 6,9 mg g-1, za ravnotežno vreme bojenja). Tokom bojenja opada početna koncentracije boje, dok raste kapacitet adsorpcije. Linearna simulacija kinetičkih parametara bojenja pokazala je da reakcijski model Modified Freundlich dominira, dok je od kinetičkih modela difuzije jednačina Boyd-a bila najpovoljnija.
Abstract
Kinetics of the dyeing process of modified polyethylene terephthalate with disperse dye are shown in this paper. The modification of the fibers was performed with an aqueous solution of slaked lime with the simultaneous action of ultrasonic waves. The dyeing of the fibers was performed in a discontinuous-batch process, with a change in the initial dye concentration (20 - 120 mg dm-3) and dyeing time (5 - 60 min). Several kinetic reactions (Pseudo first, Avrami and Modified Freundlich) and diffusion models (Weber&Morris, Boyd, and Film diffusion) were used to test the experimental data from the dyeing process. It has been found that dyeing of modified fibers gives better results than dyeing of unmodified polyester, under the same conditions. With the increase of the initial dye concentration, a degree of exhaustion decreases (76,2 - 57,4 %, for equilibrium time of dyeing) and the absorption of disperse dyes per unit mass of fibers increases (1,5 - 6,9 mg g-1, for equilibrium time of dyeing). During the dyeing process, the initial concentration of the dye decreases, whereas the capacity of the adsorption increases. A linear simulation of the kinetic dyeing parameters showed that the Modified Freundlich reaction model dominated, while of the kinetic diffusion models the Boyd equation was most favorable.
|
|
|
Reference
|
|
Aldib, M., Christie, R.M. (2013) Textile applications of photochromic dyes: Part 5: Application of commercial photochromic dyes to polyester fabric by a solvent-based dyeing method. Coloration Technology, 129(2): 131-143
|
|
Aniagor, C.O., Menkiti, M.C. (2018) Kinetics and mechanistic description of adsorptive uptake of crystal violet dye by lignified elephant grass complexed isolate. Journal of Environmental Chemical Engineering, 6(2): 2105-2118
|
|
Ashish, K.N., Anjali, P. (2019) Development and validation of an adsorption kinetic model at solid liquid interface using normalized Gudermannian function. Journal of Molecular Liquids, 276: 67-77
|
|
Burkinshaw, S.M. (1995) Chemical principles of synthetic fibre dyeing. London: Chapman & Hall - Blackie, p. 155
|
|
Ghaharpour, M., Rashidi, A., Tayebi, H. (2011) Adsorption behavior of disperse orange 30 on polyester fabric. World Applied Sciences Journal, 14(9): 1291-1295
|
|
Ibrahim, N.A., Youssef, M.A., Helal, M.H., Shaaban, M.F. (2003) Exhaust dyeing of polyester-based textiles using high-temperature-alkaline conditions. Journal of Applied Polymer Science, 89(13): 3563-3573
|
|
Iskender, M.A., Becerir, B., Koruyucu, A. (2005) Carrier dyeing of different energy level disperse dyes on polyester fabric. Textile Research Journal, 75(6): 462-465
|
|
Natali, C.F., Rodrigo, P.B., Eder, L.C., Tatiana, C., Camila, A.V., Betina, R., Marta, C.L., Thais, F.H.M., Isis, S.P. (2011) Removal of remazol black B textile dye from aqueous solution by adsorption. Desalination, 269(3): 92-103
|
|
Özcan, A. S., Özcan, A. (2005) Adsorption behavior of a disperse dye on polyester in supercritical carbon dioxide. Journal of Supercritical Fluids, 35(2): 133-139
|
|
Wang, L., Zhao, H.F., Lin, J.X. (2010) Studies on the ultrasonic-assisted dyeing of poly(trimethylene terephthalate) fabric. Coloration Technology, 126(4): 243-248
|
2
|
Xu, W., Yang, C. (2002) Hydrolysis and dyeing of polyester fabric using microwave irradiation. Coloration Technology, 118(5): 211-214
|
1
|
Xu, W., Liu, X. (2003) Surface modification of polyester fabric by corona discharge irradiation. European Polymer Journal, 39(1): 199-202
|
|
|
|