Ratarstvo i povrtarstvo
how to cite this article
share this article


  • citations in SCIndeks: [1]
  • citations in CrossRef:[4]
  • citations in Google Scholar:[]
  • visits in previous 30 days:7
  • full-text downloads in 30 days:6


article: 5 from 46  
Back back to result list
2011, vol. 48, iss. 2, pp. 291-304
Legume root symbioses: Natural history and prospects for improvement
aAll-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
bInstitute of Field and Vegetable Crops, Novi Sad
cUniversity of Novi Sad, Faculty of Agriculture
Keywords: legumes; rhizobia; Rhizobium-Legume symbiosis (RLS); nitrogen-fixing nodule; arbuscular mycorrhiza (AM); pre-adaptations; symbiotic specificity; mutualism; reciprocal altruism; symbiotic effectiveness; plant breeding
Legumes develop different mutually beneficial microbial-root symbioses such as arbuscular mysorrhiza (AM), rhizobium-legume symbiosis (RLS) and epiphytic or endophytic associations with plant growth-promoting bacteria (PGPB) which are distinguished in level of integration of the partners. Evidences of the role of AM as ancestral form of symbiosis which might be a source of the legume pre-adaptation to form some RLS are demonstrated. The RLS is supposed to evolve for a few times in ancient legumes in parallel ways based on the universal organization and regulatory mechanisms of the plant genetic material. Associations of plant roots with PGPB probably are the vestige of the early stages of evolution in morphologically differentiated RLS. Also, it is quite possible that 'first' rhizobia have originated from bacterial endosymbionts of AM fungi; then AM fungi might operate as effective vectors for introducing bacteria into the plants. Thus, the legume root symbioses may be considered as a single 'evolutionary plant-microbial continuum'. The acquired knowledge about evolution of plantmicrobe symbioses would contribute to the creation of new commercial varieties of plants with the use of both bio-engineered methods and traditional plant breeding. An original conception of legume breeding to improve their symbiotic effectiveness is proposed.
Allen, O.N., Allen, E.K. (1981) The leguminosae: A source book of characteristics, uses and nodulation. Madison: The University of Wisconsin Press
Artursson, V., Finlay, R.D., Jansson, J.K. (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8(1): 1-10
Bakker, P.A.H.M., Raaijmakers, J.M., Bloemberg, G., Hofte, M., Lemanceau, P., Cooke, B.M. (2007) New perspectives and approaches in plant growth-promoting rhizobacteria research. Dordrecht: Springer
Balachandar, D., Raja, P., Kumar, K., Sundaram, S.P. (2007) Nonrhizobial nodulation in legumes. Biotechnol. Molec. Biol. Rev, 2, str. 49-57
Banba, M., Gutjahr, C., Miyao, A., Hirochika, H., Paszkowski, U., Kouchi, H., Imaizumi-Anraku, H. (2008) Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology, 49(11): 1659-1671
Barea, J.M., Pozo, M.J., Azcon, R., Azcon-Aguilar, C. (2005) Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417): 1761-1778
Bloemberg, G.V., Lugtenberg, B.J.J. (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol, 4, str. 343-350
Bonnier, C. (1961) Spontaneous tumors on the roots of germ-free Leguminosae: Their possible significance in the Rhizobium-Leguminosae symbiosis. Ann. Inst. Past, 100, str. 358-367
Borisov, A.Y., Shtark, O.Y., Danilova, T.N., Tsyganov, V.E., Naumkina, T.S. (2004) Effectiviness of combined inoculation of field peas with arbuscular mycorrhizal fungi and nodule bacteria. Russ. Agric. Sci, 4, str. 5-7
Borisov, A.Y., Tsyganov, V.E., Shtark, O.Y., Jacobi, L.M., Naumkina, T.S., Serdyuk, V.P., Vishnyakova, M.A. (2002) The catalogue of world-wide collection. in: Tikhonovich I.A., Vishnyakova M.A. [ed.] Pea (Symbiotic Effectiveness), Saint Petersburg: VIR
Borisov, A.Y., Danilova, T.N., Koroleva, T.A., Kuznetsova, E.V., Madsen, L., Mofett, M., Naumkina, T.S., Nemankin, T.A., Ovchinnikova, E.S., Pavlova, Z.B., Petrova, N.E., Pinaev, A.G., Radutoiu, S., Rozov, S.M., Rychagova, T.S., Shtark, O.Yu. (2007) Regulatory genes of garden pea (Pisum sativum L) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: A review of basic and applied aspects. Russ. J. Appl. Biochem. Microbiol, 43, str. 265-271
Borisov, A.Y., Danilova, T.N., Shtark, O.Y., Solovov, I.I., Kazakov, A.E., Naumkina, T.S., Vasilchikov, A.G., Chebotar, V.K., Tikhonovich, I.A. (2008) Tripartite symbiotic system of pea (Pisum sativum L): Applications in sustainable agriculture. in: Dakora F.D., Chimphango B.M., Valentine A.J., Elmerich C., Newton W.E. [ed.] Biological nitrogen fixation: Towards poverty alleviation through sustainable agriculture, Berlin: Springer Science and Business Media, 15-17
Brewin, N.J. (2004) Plant cell wall remodeling in the Rhizobiumlegume symbiosis. Critical Reviews in Plant Sciences, 23: 1-24
Bruns, T.D., Bidartondo, M.I. (2002) Molecular windows into the below-ground interactions of ectomycorrhizal fungi. Mycol, 16(2), str. 47-50
Caetano-Anolles, G., Wrobel-Boerner, E., Bauer, W.D. (1992) Growth and Movement of Spot Inoculated Rhizobium meliloti on the Root Surface of Alfalfa. Plant Physiol, 98(3): 1181-1189
Chebotar, V.K., Kazakov, A.E., Erofeev, S.V., Danilova, T.N., Naumkina, T.S., Shtark, O.Y., Tikhonovich, I.A., Borisov, A.Y. (2008) Method of production of complex microbial fertilizer. Russian Federation Patent, No 2318784
Deakin, W.J., Broughton, W.J. (2002) Symbiotic use of pathogenic strategies: Rhizobial protein secretion systems. Nat. Rev. Microbiol, 7, str. 312-320
Deusch, O., Landan, G., Roettger, M., Gruenheit, N., Kowallik, K.V., Allen, J.F., Martin, W., Dagan, T. (2008) Genes of Cyanobacterial Origin in Plant Nuclear Genomes Point to a Heterocyst-Forming Plastid Ancestor. Molecular Biology and Evolution, 25(4): 748-761
d'Haeze W., Holsters, M. (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology, 12(6): 79R-105
Dilworth, M.J., James, E.K., Sprent, J.I., Newton, W.E. (2008) Nitrogen-fixing leguminous symbioses. Dordrecht: Springer
Downie, A.J. (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiology Reviews, 34(2): 150-170
Fournier, J., Timmers, A.C.J., Sieberer, B.J., Jauneau, A., Chabaud, M., Barker, D.G. (2008) Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol, 148, str. 1985-1995
Garcia-Garrido, J.M., Ocampo, J.A. (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J. Exp. Bot, 53, str. 1377-1386
Genre, A., Chabaud, M., Timmers, T., Bonfante, P., Barker, D.G. (2005) Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection. Plant Cell, 17(12): 3489-3499
Genre, A., Chabaud, M., Faccio, A., Barker, D.G., Bonfante, P. (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell, 20, str. 1407-1420
Genre, A., Ortu, G., Bertoldo, C., Martino, E., Bonfante, P. (2009) Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol, 149, str. 1424-1434
Genre, A., Bonfante, P. (2005) Building a mycorrhizal cell: How to reach compatibility between plants and arbuscular mycorrhizal fungi. Journal of Plant Interactions, 1(1): 3-13
Genre, A., Bonfante, P. (2007) Check-In Procedures for Plant Cell Entry by Biotrophic Microbes. Molecular Plant-Microbe Interactions, 20(9): 1023-1030
Gualtieri, G., Bisseling, T. (2000) The evolution of nodulation. Plant Mol Biol, 42, str. 181-194
Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L., Hedges, S.B. (2001) Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 293(5532): 1129-1133
Hildebrandt, U., Ouziad, F., Marner, F., Bothe, H. (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiology Letters, 254(2): 258-267
Hirsch, A.M., Lum, M.R., Downie, J.A. (2001) What makes the rhizobia-legume symbiosis so special?. Plant Physiology, 127(4): 1484-1492
Hossain, M.S., Mårtensson, A. (2008) Potential use of Rhizobium spp. to improve fitness of nonnitrogen-fixing plants. Acta Agric. Scand. B, 58 (4), str. 352-335
Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., Walker, G.C. (2007) How rhizobial symbionts invade plants: The Sinorhizobium-Medicago model. Nature Reviews Microbiology, 5(8): 619-633
Kistner, C., Winzer, T., Pitzschke, A., Mulder, L., Sato, S., Kaneko, T., Tabata, S.S., N., Stougaard, J., Webb, K.J., Szczyglowski, K., Parniske, M. (2005) Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. Plant Cell, 17(8): 2217-2229
Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Dénarié, J., Barker, D.G., Bécard, G. (2003) A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots of Medicago truncatula. Plant Physiol, 131(3): 952-962
Küster, H., Vieweg, M.F., Manthey, K., Baier, M.C., Hohnjec, N., Perlick, A.M. (2007) Identification and expression regulation of symbiotically activated legume genes. Phytochemistry, 68(1): 8-18
Lavin, M., Herendeen, P.S., Wojciechowski, M.F. (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol, 54, str. 574-594
Lévy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., Ané, J., Lauber, E., Bisseling, T., Denarie, J., Rosenberg, C., Debelle, F. (2004) A Putative Ca2+ and Calmodulin-Dependent Protein Kinase Required for Bacterial and Fungal Symbioses. Science, 303(5662): 1361-1364
Limpens, E., Mirabella, R., Fedorova, E., Franken, C., Franssen, H., Bisseling, T., Geurts, R. (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proceedings of the National Academy of Sciences, 102(29): 10375-10380
Maclean, A.M., Finan, T.M., Sadowsky, M.J. (2007) Genomes of the Symbiotic Nitrogen-Fixing Bacteria of Legumes. Plant Physiol., 144(2): 615-622
Maillet, F., Poinsot, V., André, O., Puech-Pagès, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Bécard, G., Dénarié, J. (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469(7328): 58-63
Margulis, L. (1998) Symbiotic planet: A new look at evolution. Perseus Books Group
Markmann, K., Parniske, M. (2009) Evolution of root endosymbiosis with bacteria: How novel are nodules?. Trends Plant Sci, 14, str. 77-86
Minerdi, D., Bianciotto, V., Bonfante, P. (2002) Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences. Plant and Soil, 244(1/2): 211-219
Moncalvo, J.M., Lutzoni, F.M., Rehner, S.A., Johnson, J., Vilgalys, R. (2000) Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst. Biol, 49, str. 278-305
Navazio, L., Moscatiello, R., Genre, A., Novero, M., Baldan, B., Bonfante, P., Mariani, P. (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol, 144, str. 673-681
Ohyama, T., Ohtake, N., Sueyoshi, K., Tewari, K., Takahashi, Y., Ito, S., Nishiwaki, T., Nagumo, Y., Ishii, S., Sato, T. (2008) Nitrogen fixation and metabolism in soybean plants. in: Couto G.N. [ed.] Nitrogen fixation research progress, New York: Nova Science Publishers, 15-109
Ovtsyna, A.O., Staehelin, C. (2005) Bacterial signals required for the Rhizobium-legume symbiosis. Recent Res. Develop. Microbiol, 7, str. 631-648
Parniske, M. (2000) Intracellular accommodation of microbes by plants: A common developmental program for symbiosis and disease?. Current Opinion in Plant Biology, 3(4): 320-328
Parniske, M. (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology, 6(10): 763-775
Pozo, M.J., Jung, S.C., Lopez-Raez, J.A., Azcon-Aguilar, C. (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: The role of plant defense mechanisms. in: Koltai H.,, Kapulnik Y. [ed.] Arbuscular mycorrhizas: Physiology and function, Dordrecht: Springer, str. 193-207
Preston, G.M. (2004) Plant perceptions of plant growthpromoting Pseudomonas. Phil. Trans. R. Soc. Lond. B., 359, str. 907-918
Provorov, N.A., Shtark, O.Y., Zhukov, V.A., Borisov, A.Y., Tikhonovich, I.A. (2010) Developmental genetics of plantmicrobe symbioses. Nova Science Publishers
Provorov, N.A., Vorobyov, N.I. (2009) Interspecies altruism in plant-microbe symbioses: Use of group selection models to resolve the evolutionary paradoxes. in: Azcun-Aguilar C., Barea J.M., Gianinazzi S., Gianinazzi-Pearson V. [ed.] Mycorrhizas: Functional processes and ecological impact, Berlin: Springer-Verlag, 17-32
Provorov, N.A., Tikhonovich, I.A. (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genetic Resources and Crop Evolution, 50(1): 89-99
Provorov, N.A., Vorobyov, N.I., Andronov, E.E. (2008) Macro- and microevolution of bacteria in symbiotic systems. Russian Journal of Genetics, 44(1): 6-20
Provorov, N.A., Vorobyov, N.I. (2010) Evolutionary genetics of plant-microbe symbioses. New York: NOVA Science Publishers
Redecker, D., Kodner, R., Graham, L.E. (2000) Glomalean fungi from the ordovician. Science, Sep 15;289(5486), str. 1920-1
Remy, W., Taylor, T.N., Hass, H., Kerp, H. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91(25): 11841-11843
Sanchez, L., Weidmann, S., Arnould, C., Bernard, A.R., Gianinazzi, S., Gianinazzi-Pearson, V. (2005) Pseudomonas fluorescens and Glomus mosseae Trigger DMI3-Dependent Activation of Genes Related to a Signal Transduction Pathway in Roots of Medicago truncatula. Plant Physiology, 139(2): 1065-1077
Schulz, B., Boyle, S., Sieber, T. (2006) Microbial root endophytes. Dordrecht: Springer
Schüßler, A. (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant and Soil, 244(1/2): 75-83
Schüßler, A., Schwarzott, D., Walker, C. (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res, 105, str. 1413-1297
Sessitsch, A., Howieson, J.G., Perret, X., Antoun, H., Martinez-Romero, E. (2002) Advances in Rhizobium research. Critical Reviews in Plant Sciences, 21(4): 323-378
Shtark, O.Y., Borisov, A.Y., Naumkina, T.S., Akhtemova, G.A., Zhukov, V.A., Danilova, T.N., Chebotar, V.K., Vasilchikov, A.G., Barbashov, M.V., Zotikov, V.I., Tikhonovich, I.A. (2010) Creation of new higheffective varieties of legumes at interaction with beneficial soil microorganisms. in: Kunakh V.A. [ed.] Factors of experimental evolution of organisms, Kiev: Logos, 210-214
Shtark, O.Y., Borisov, A.Y., Zhukov, V.A., Provorov, N.A., Tikhonovich, I.A. (2010) Intimate associations of beneficial soil microbes with the host plants. in: Dixon G.R., Tilston E.L. [ed.] Soil microbiology & sustainable crop production, Dordrecht: Springer, 119-196
Shtark, O.Y., Danilova, T.N., Naumkina, T.S., Vasilchikov, A.G., Chebotar, V.K., Kazakov, A.E., Zhernakov, A.I., Nemankin, T.A., Prilepskaya, N.A., Borisov, A.Y., Tikhonovich, I.A. (2006) Analysis of pea (Pisum sativum L) source material for breeding of cultivars with high symbiotic potential and choice of criteria for its evaluation. Ecol. Genet, 4, str. 22-28
Sidorenko, S.V. (2001) Infectious process as dialogue between the host and parasite. Clin. Immunol. Antimicrob. Chemother, 3(4), str. 301-315
Smith, S.E., Read, D.J. (2008) Mycorrhizal symbiosis. New York-San Diego, itd: Academic Press
Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J., ur. (1998) The Rhizobiaceae, molecular biology of model plant-associated bacteria. Dordrecht: Kluwer Academic Publishers
Sprent, J.I., James, E.K. (2007) Legume evolution: Where do nodules and mycorrhizas fit in?. Plant Physiol, 144, str. 575-581
Sprent, J.I. (2001) Nodulation in legumes: Royal botanical gardens. Kew: Cromwell Press
Sprent, J.I. (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytologist, 174(1): 11-25
Starker, C.G., Parra-Colmenares, A.L., Smith, L., Mitra, R.M., Long, S.R. (2006) Nitrogen Fixation Mutants of Medicago truncatula Fail to Support Plant and Bacterial Symbiotic Gene Expression. Plant Physiol, 140(2): 671-680
Suominen, L., Roos, C., Lortet, G., Paulin, L., Lindström, K. (2001) Identification end structure of the rhizobium galegae common nodulation genes: Evidence for horizontal gene transfer. Mol. Biol. Evol, 18, str. 907-916
Takemoto, D., Hardham, R. (2004) The Cytoskeleton as a Regulator and Target of Biotic Interactions in Plants. Plant Physiol, 136(4): 3864-3876
Takemoto, D., Jones, D.A., Hardham, A.R. (2003) GFP-tagging of cell components reveals the dynamics of subcellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant Journal, 33(4): 775-792
Terefework, Z., Lortet, G., Souminen, L., Lindström, K. (2000) Molecular evolution of interactions between rhizobia and their legume hosts. in: Procaryotic nitrogen fixation: A model system for analysis of a biological process, Wymondham: Horizon Science Press
Timmers, A.C.J., Vallotton, P., Heym, C., Menzel, D. (2007) Microtubule dynamics in root hairs of Medicago truncatula. European Journal of Cell Biology, 86(2): 69-83
Truchet, G., Barker, D.G., Camut, S., de Billy, F., Vasse, J., Huguet, T. (1989) Alfalfa nodulation in the absence of Rhizobium. Mol. Gen. Genet, 219, str. 65-68
Vallad, G.E., Goodman, R.M. (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Science, 44, str. 1920-1934
van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaitre, B., Alunni, B., Bourge, M., Kucho, K.-i., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., Mergaert, P. (2010) Plant Peptides Govern Terminal Differentiation of Bacteria in Symbiosis. Science, 327(5969): 1122-1126
Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S., Staceya, M.G., Stacey, G. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell, 20, str. 471-481
Zavalin, A.A., Kozhemyakov, A.P. (2010) New technologies of production and use of complex biological preparations. St. Petersburg: Khimizdat
Zhu, H., Choi, H.K., Cook, D.R., Shoemaker, R.C. (2005) Bridging Model and Crop Legumes through Comparative Genomics. Plant Physiol, 137(4): 1189-1196
Zhukov, V.A., Nemankin, T.A., Ovchinnikova, E.S., Kuznetsova, E.V., Zhernakov, A.I., Titov, V.S., Grishina, O.A., Sulima, A.S., Borisov, Y.G., Borisov, A.Y., Tikhonovich, I.A. (2010) Creating a series of gene-specific molecular markers for comparative mapping of the genome of pea (Pisum sativum L) and diploid alfalfa (Medicago truncatula Gaertn). in: Kunakh V.A. [ed.] Factors of experimental evolution of organisms, Kiev: Logos, 30-34


article language: English
document type: Review Paper
DOI: 10.5937/ratpov1102291S
published in SCIndeks: 16/08/2011

Related records

No related records