Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:2
  • full-text downloads in 30 days:0

Contents

article: 3 from 3  
Back back to result list
2016, vol. 69, iss. 3-4, pp. 99-105
The tibial aperture surface analysis in anterior cruciate ligament reconstruction process
aUniversity of Novi Sad, Faculty of Technical Science
bClinical Center of Vojvodina, Department of Orthopedic Surgery and Traumatology, Novi Sad

emailzormil@uns.ac.rs
Abstract
Introduction. The tibial tunnel aperture in the anterior cruciate ligament reconstruction is usually analyzed as an ellipse, generated as an intersection between a tibial plateau and a tibial bone tunnel. The aim of this study is to show that the tibial tunnel aperture, which utilizes 3D tibial surface bone model, differs significantly from common computations which present the tibial tunnel anterior cruciate ligament aperture surface as an ellipse. Material and Methods. An interactive program system was developed for the tibial tunnel aperture analysis which included the real tibia 3D surface bone model generated from a series of computed tomography images of ten male patients, their mean age being 25 years. In aperture calculation, the transverse drill angle of 10o was used, whereas sagittal drill angles of 40o, 50o and 60o were used with the drill-bit diameter set to 10 mm. The real 3D and 2D tibial tunnel aperture surface projection was calculated and compared with an ellipse. Results. According to the calculations, generated 3D aperture surfaces were different for every patient even though the same drill parameters were used. For the sagittal drill angles of 40o, 50o and 60o, the mean difference between the projected 3D and 2D area on the tibial plateau was 19.6 ± 5.4%, 21.1 ± 8.0% and 21.3 ± 9.6%, respectively. The difference between the projected 3D area on the tibial plateau and ellipse surface was 54.8 ± 16.3%, 39.6 ± 10.4% and 25.0 ± 8.0% for sagittal drill angles of 40o, 50o and 60o, respectively. Conclusion. The tibial tunnel aperture surface area differs significantly from the ellipse surface area, which is commonly used in the anterior cruciate ligament reconstruction analysis. Inclusion of the 3D shape of the tibial attachment site in the preoperative anterior cruciate ligament reconstruction planning process can lead to a more precise individual anatomic anterior cruciate ligament reconstruction on the tibial bone. Both tibial aperture area generated in 3D and its projection on a tibial plateau are larger than the ellipse surface; therefore, individual characteristics of each patient have to be taken into consideration.
References
Abebe, E.S., Utturkar, G.M., Taylor, D.C., Spritzer, C.E., Kim, J.P., Moorman, C.T., Garrett, W.E., DeFrate, L.E. (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. Journal of Biomechanics, 44(5): 924-929
Amis, A.A., Jakob, R.P. (1998) Anterior cruciate ligament graft positioning, tensioning and twisting. Knee Surg Sports Traumatol Arthrosc, 6 Suppl 1: S2-12
Bedi, A., Maak, T., Musahl, V., Citak, M., o'loughlin P.F., Choi, D., i dr. (2011) Effect of tibial tunnel position on stability of the knee after anterior cruciate ligament reconstruction is the tibial tunnel position most important?. Am J Sports Med, 39(2): 366-73
Colombet, P., Robinson, J., Christel, P., Franceschi, J., Djian, P., Bellier, G., Sbihi, A. (2006) Morphology of Anterior Cruciate Ligament Attachments for Anatomic Reconstruction: A Cadaveric Dissection and Radiographic Study. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 22(9): 984-992
Fabri, A., Pion, S., ur. (2009) CGAL: The computational geometry algorithms library. in: The 17th ACM SIGS-PATIAL international conference on advances in geographic information systems; Apr 11: Seatle, WA, USA, Proceedings of, p. 538-9
Ferretti, M., Doca, D., Ingham, S.M., Cohen, M., Fu, F.H. (2012) Bony and soft tissue landmarks of the ACL tibial insertion site: An anatomical study. Knee Surg Sports Traumatol Arthrosc, 20(1): 62-8
Forsythe, B. (2010) The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. Journal of Bone and Joint Surgery (American), 92(6): 1418
Harner, C.D., Baek, G.H., Vogrin, T.M., Carlin, G.J., Kashiwaguchi, S., Woo, S.L-Y. (1999) Quantitative Analysis of Human Cruciate Ligament Insertions. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 15(7): 741-749
Hoshino, Y., Kim, D., Fu, F.H. (2012) Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction. Anatomy Research International, 2012: 1-5
Hwang, M.D., Piefer, J.W., Lubowitz, J.H. (2012) Anterior Cruciate Ligament Tibial Footprint Anatomy: Systematic Review of the 21st Century Literature. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 28(5): 728-734
Iriuchishima, T., Shirakura, K., Yorifuji, H., Aizawa, S., Murakami, T., Fu, F.H. (2013) ACL footprint size is correlated with the height and area of the lateral wall of femoral intercondylar notch. Knee Surg Sports Traumatol Arthrosc, 21(4): 789-96
Kodali, P., Yang, S., Koh, J. (2008) Computer-assisted Surgery for Anterior Cruciate Ligament Reconstruction. Sports Medicine and Arthroscopy Review, 16(2): 67-76
Kopf, S., Martin, D.E., Tashman, S., Fu, F.H. (2010) Effect of tibial drill angles on bone tunnel aperture during anterior cruciate ligament reconstruction. J Bone Joint Surg Am, 92(4): 88
Kopf, S., Pombo, M.W., Szczodry, M., Irrgang, J.J., Fu, F.H. (2011) Size variability of the human anterior cruciate ligament insertion sites. Am J Sports Med, 39(1): 108-13
Kopf, S., Musahl, V., Tashman, S., Szczodry, M., Shen, W., Fu, F.H. (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surgery, Sports Traumatology, Arthroscopy, 17(3): 213-219
Luites, J.W.H., Wymenga, A.B., Blankevoort, L., Kooloos, J.G.M. (2007) Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surgery, Sports Traumatology, Arthroscopy, 15(12): 1422-1431
Milankov, M., Savic, D., Milojevic, Z. (2012) Geometric considerations regarding the surface of the tibial insertion of the ACL graft. Knee Surg Sports Traumatol Arthrosc, 20(9): 1887-8
Milankov, M.Z., Marcikic, A., Gojkovic, Z. (2014) Tibial Insertion Is Not a Circle But an Ellipse. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(6): 660
Miller, M.D., Gerdeman, A.C., Miller, C.D., Hart, J.M., Gaskin, C.M., Golish, S.R., Clancy, W.G. (2010) The Effects of Extra-articular Starting Point and Transtibial Femoral Drilling on the Intra-articular Aperture of the Tibial Tunnel in ACL Reconstruction. American Journal of Sports Medicine, 38(4): 707-712
Moloney, G., Araujo, P., Rabuck, S., Carey, R., Rincon, G., Zhang, X., Harner, C. (2013) Use of a Fluoroscopic Overlay to Assist Arthroscopic Anterior Cruciate Ligament Reconstruction. American Journal of Sports Medicine, 41(8): 1794-1800
Musahl, V., Burkart, A., Debski, R.E., van Scyoc, A., Fu, F.H., Woo, S.L-Y. (2003) Anterior cruciate ligament tunnel placement: Comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 19(2): 154-160
Ninković, S., Avramov, S., Harhaji, V., Obradović, M., Vranješ, M., Milankov, M. (2015) Influence of different levels of sports activities on the quality of life after the reconstruction of anterior cruciate ligament. Medicinski pregled, vol. 68, br. 3-4, str. 116-121
Piasecki, D.P., Bach, B.R., Orias, A. A. E., Verma, N.N. (2011) Anterior Cruciate Ligament Reconstruction: Can Anatomic Femoral Placement Be Achieved With a Transtibial Technique?. American Journal of Sports Medicine, 39(6): 1306-1315
Pietrini, S.D., Ziegler, C.G., Anderson, C.J., Wijdicks, C.A., Westerhaus, B.D., Johansen, S., Engebretsen, L., LaPrade, R.F. (2011) Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surgery, Sports Traumatology, Arthroscopy, 19(5): 792-800
Purnell, M.L., Larson, A.I., Clancy, W. (2008) Anterior Cruciate Ligament Insertions on the Tibia and Femur and Their Relationships to Critical Bony Landmarks Using High-Resolution Volume-Rendering Computed Tomography. American Journal of Sports Medicine, 36(11): 2083-2090
Rabuck, S.J., Middleton, K.K., Maeda, S., Fujimaki, Y., Muller, B., Araujo, P.H., Fu, F.H. (2012) Individualized Anatomic Anterior Cruciate Ligament Reconstruction. Arthroscopy Techniques, 1(1): e23-e29
Ristanis, S., Giakas, G., Papageorgiou, C.D., Moraiti, T., Stergiou, N., Georgoulis, A.D. (2003) The effects of anterior cruciate ligament reconstruction on tibial rotation during pivoting after descending stairs. Knee Surgery, Sports Traumatology, Arthroscopy, 11(6): 360-365
Ristić, V., Ninković, S., Harhaji, V., Milankov, M. (2010) Causes of anterior cruciate ligament injuries. Medicinski pregled, vol. 63, br. 7-8, str. 541-545
Sadoghi, P., Kröpfl, A., Jansson, V., Müller, P.E., Pietschmann, M.F., Fischmeister, M.F. (2011) Impact of Tibial and Femoral Tunnel Position on Clinical Results After Anterior Cruciate Ligament Reconstruction. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 27(3): 355-364
Sahasrabudhe, A., Christel, P., Anne, F., Appleby, D., Basdekis, G. (2010) Postoperative evaluation of tibial footprint and tunnels characteristics after anatomic double-bundle anterior cruciate ligament reconstruction with anatomic aimers. Knee Surgery, Sports Traumatology, Arthroscopy, 18(11): 1599-1606
Schroeder, W., Martin, K., Lorensen, B. (2003) An object-oriented approach to 3D graphics. New Yersey: Kitware, Inc. Prentice Hall, 3rd ed
Siebold, R. (2011) The concept of complete footprint restoration with guidelines for single- and double-bundle ACL reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy, 19(5): 699-706
Swami, V.G., Cheng-Baron, J., Hui, C., Thompson, R., Jaremko, J.L. (2013) Reliability of Estimates of ACL Attachment Locations in 3-Dimensional Knee Reconstruction Based on Routine Clinical MRI in Pediatric Patients. American Journal of Sports Medicine, 41(6): 1319-1329
Tállay, A., Lim, M., Bartlett, J. (2008) Anatomical study of the human anterior cruciate ligament stump's tibial insertion footprint. Knee surgery, sports traumatology, arthroscopy, 16(8): 741-6
 

About

article language: English
document type: Professional Paper
DOI: 10.2298/mpns1604099M
published in SCIndeks: 27/04/2016

Related records