Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
Back povratak na rezultate
2021, vol. 76, br. 3, str. 318-325
Predviđanje kvaliteta elektroerozivne obrade zasnovano na fazi sistemu zaključivanja
Univerzitet u Novom Sadu, Fakultet tehničkih nauka

e-adresamaring@uns.ac.rs
Projekat:
The paper is the result of the research within the project financed by the Ministry of Science and Technological Development of the Republic of Serbia

Ključne reči: EDM proces; parametri pražnjenja; zazor; hrapavost površine; FIS model
Sažetak
Kvalitet i produktivnost su dve najvažnije performanse elektroerozivne obrade (EDM). U ovom radu predstavljena je primena fazi sistema zaključivanja (FIS) za predviđanje kvaliteta obrade kod EDM procesa. Konkretno, FIS je sproveo modeliranje geometrijske tačnosti i završne obrade delova obrađenih sa EDM. Kod modela fazi sistema zaključivanja, ulazne promenljive su struja pražnjenja i trajanje impulsa, a izlazni parametri su zazor između elektroda i hrapavost površine radnog komada. Postavka predloženog FIS modela omoguc'uje efikasniji izbor ulaznih vrednosti EDM procesa, što potom dovodi do boljih uslova obrade i izlaznog kvaliteta proizvoda. Modeliranje EDM procesa zasnovano na fazi sistemu zaključivanja je pokazalo vrlo dobre rezultate u poređenju sa eksperimentalnim podacima.
Reference
Caydas, U., Hascalik, A., Ekici, S. (2009) An Adaptive Neurofuzzy Inference System (ANFIS) Model for Wire-EDM. Expert Systems with Applications, 36(2-3): 6135-6139
Ćojbašić, Ž., Brkić, D. (2011) Veštačka neuronska mreža kao alat za procenu hidrauličkog otpora. Tehnika, 66(6): 947-953
Gostimirović, M., Pucovsky, V., Sekulić, M., Radovanović, M., Madić, M. (2018) Evolutionary Multi-objective Optimization of Energy Efficiency in Electrical Discharge Machining. Journal of Mechanical Science and Technology, 32(10): 4775-4785
Gostimirović, M., Kovač, P., Sekulić, M. (2018) An Inverse Optimal Control Problem in the Electrical Discharge Machining. Sādhanā, 43(5)
Gostimirović, M., Radovanović, M., Madić, M., Rodić, D., Kulundžić, N. (2018) Inverse Electro-thermal Analysis of the Material Removal Mechanism in Electrical Discharge Machining. International Journal of Advanced Manufacturing Technology, 97(5-8): 1861-1871
Hanif, M., Ahmad, W., Hussain, S., Jahanzaib, M., Shah, A.H. (2019) Investigating the Effects of Electric Discharge Machining Parameters on Material Removal Rate and Surface Roughness on AISI D2 Steel Using RSM-GRA Integrated Approach. International Journal of Advanced Manufacturing Technology, 101(5-8): 1255-1265
Klir, G.J., Yuan, B. (1995) Fuzzy sets and fuzzy logic, theory and applications. New Jersey: Prentice Hall
Konig, W. (1979) Fertigungsverfahren. Dusseldorf, Germany: VDIVerlag GmbH, Band 3 Abtragen
Kovač, P., Gostimirović, M., Sekulić, M., Savković, B. (2009) A Review of Research Related to Advancing Manufacturing Technology. Journal of Production Engineering, 12(1): 9-16
Lin, J.L., Lin, C.L. (2005) The Use of Grey-fuzzy Logic for the Optimization of the Manufacturing Process. Journal of Materials Processing Technology, 160(1): 9-14
Mamdani, E.H., Assilian, S. (1975) An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies, 7(1): 1-13
Rao, R.V. (2011) Advanced Modeling and Optimization of Manufacturing Processes. London: Springer
Rodić, D., Gostimirović, M., Madić, M., Sekulić, M., Aleksić, A. (2020) Fuzzy Model-based Optimal Energy Control During the Electrical Discharge Machining. Neural Computing and Applications, 32(22): 17011-17026
Rodić, D., Sekulić, M., Gostimirović, M., Pucovsky, V., Kramar, D. (2020) Fuzzy Logic and Sub-clustering Approaches to Predict Main Cutting Force in High-pressure Jet Assisted Turning. Journal of Intelligent Manufacturing
Ross, T.J. (2010) Fuzzy Logic with Engineering Applications. New Jersey: John Wiley & Sons
Salman, Ö., Kayacan, M. (2008) Evolutionary Programming Method for Modeling the EDM Parameters for Roughness. Journal of Materials Processing Technology, 200: 347-355
Shabgard, M.R., Badamchizadeh, M.A., Ranjbary, G., Amini, K. (2013) Fuzzy Approach to Select Machining Parameters in Electrical Discharge Machining (EDM) and Ultrasonic-assisted EDM Processes. Journal of Manufacturing Systems, 32(1): 32-39
Suganthi, X., Natarajan, U., Sathiyamurthy, S., Chidambaram, K. (2013) Prediction of Quality Responses in Micro-EDM Process Using an Adaptive Neuro-fuzzy Inference System (ANFIS) Model. International Journal of Advanced Manufacturing Technology, 68(1-4): 339-347
Sugeno, M., Kang, G.T. (1988) Structure Identification of Fuzzy Model. Journal of Fuzzy Sets and Systems, 28(1): 15-33
Tešić, S.B., Zeljković, M.V., Čiča, Đ.Đ. (2019) Optimizacija i ispitivanje uticaja parametara rezanja na hrapavost obrađene površine pri glodanju biokompatibilne legure - Ti6Al4V. Tehnika, vol. 74, br. 5, str. 677-682
Tsai, K., Wang, P. (2001) Comparisons of neural network models on material removal rate in electrical discharge machining. Journal of Materials Processing Technology, 117(1-2): 111-124
Tsai, K.M., Wang, P.J. (2001) Predictions on Surface Finish in Electrical Discharge Machining Based Upon Neural Network Models. International Journal of Machine Tools and Manufacture, 41(10): 1385-1403
Yilmaz, O., Eyercioglu, O., Gindy, N.N.Z. (2006) A User-friendly Fuzzy-based System for the Selection of Electro Discharge Machining Process Parameters. Journal of Materials Processing Technology, 172(3): 363-371
Zhang, Q.H., Zhang, J.H., Ren, S.F., Niu, Z.W., Ai, X. (2005) A Theoretical Model of Surface Roughness in Ultrasonic Vibration Assisted Electrical Discharge Machining in Gas. International Journal of Manufacturing Technology and Management, 7: 381-390
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/tehnika2103318G
primljen: 31.07.2020.
prihvaćen: 19.05.2021.
objavljen u SCIndeksu: 10.07.2021.
Creative Commons License 4.0