|
Reference
|
|
*** Aalco Metals Ltd, UK. http://wwweng.lbl.gov/~shuman/NEXT/MATERIALS&COMPO NENTS/Pressure_vessels/Aalco-MetalsLtd_Stainless-Steel_1.4571-316Ti_40.pdf (Accessed 1 October 2020.)
|
|
Aydoğdu, G.H., Aydinol, M.K. (2006) Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corrosion Science, 48(11): 3565-3583
|
1
|
Bai, L. (1991) AC impedance of faradaic reactions involving electrosorbed intermediates: Examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. Journal of The Electrochemical Society, 138(10): 2897
|
|
Dhaiveegan, P., Elangovan, N., Nishimura, T., Rajendran, N. (2016) Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine urban environment: Field study. RSC Adv, 6: 47314-37324
|
|
Duana, Z., Mana, C., Dong, C., Cui, Z., Kong, D., Wangx, L., Wang (2020) Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corros. Sci, 167, article 108520
|
|
Finšgar, M., Milošev, I. (2010) Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid. Corrosion Science, 52(7): 2430-2438
|
|
Lai, W.Y., Zhao, W.Z., Yin, Z.F., Zhang, J. (2012) Electrochemical and XPS studies on corrosion behaviours of AISI 304 and AISI 316 stainless steels under plastic deformation in sulphuric acid solution. Surf. Interface Anal, 44: 505-512
|
|
Lorsbach, B., Schmitz, E. (2018) Influence of test parameters of potentiodynamic current density measurements on the determination of the pitting corrosion resistance of austenitic stainless steels. Materials and Corrosion, 69(1): 37-43
|
|
Loto, R.T. (2019) Corrosion resistance and morphological deterioration of 316Ti austenitic, GX4CrNiMo16-5-1 martensitic and 444 ferritic stainless steels in aqueous corrosive environments. Results in Physics, 14, article 102423
|
|
Loto, R.T. (2017) Study of the corrosion resistance of type 304L and 316 austenitic stainless steels in acid chloride solution. Orient J Chem, 33(3): 1090-1096
|
1
|
Malinović, B., Đuričić, T., Zorić, D. (2020) Corrosion behaviour of stainless steel EN 1.4301 in acid media in presence of PBTCA inhibitor. Zaštita materijala, vol. 61, br. 2, str. 133-139
|
|
Otero, E., Pardo, A., Utrilla, M.V., Pérez, F.J., Merino, C. (1997) The corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of organic acids. Corrosion Science, 39(3): 453-463
|
|
Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Carboneras, M., Arrabal, R. (2007) Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels. Acta Materialia, 55(7): 2239-2251
|
|
Singh, A., Caihong, Y., Yaocheng, Y., Soni, N., Wu, Y., Lin, Y. (2019) Analyses of new electrochemical techniques to study the behavior of some corrosion mitigating polymers on n80 tubing steel. ACS Omega, 4(2): 3420-3431
|
|
Yi, Y., Cho, P., Al, Z.A., Addad, Y., Jang, C. (2013) Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution. Corrosion Science, 74: 92-97
|
|
Zakeri, M., Naghizadeh, M., Nakhaie, D., Moayed, M.H. (2016) Pit transition potential and repassivation potential of stainless steel in thiosulfate solution. J. Electrochem. Soc, 163(6): C275-C281
|
|
Zhao, B., Zhao, W., Shi, H., Li, G., Ding, Y. (2019) The effects of stabilizing treatment on microstructure and corrosion resistance of 316Ti stainless steel. Engineering Failure Analysis, 105: 961-969
|
|
|
|