Metrika

  • citati u SCIndeksu: [2]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:24
  • preuzimanja u poslednjih 30 dana:22

Sadržaj

članak: 2 od 2  
Back povratak na rezultate
2020, vol. 61, br. 4, str. 339-345
Korozija nerđajućeg čelika 316Ti u 10% hlorovodoničnoj i sumpornoj kiselini
Univerzitet u Beogradu, Tehnološko-metalurški fakultet

e-adresaBNGrgur@tmf.bg.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Tehnološko-metalurški fakultet) (MPNTR - 451-03-68/2020-14/200135)

Ključne reči: Austenitni nerđaju i čelik; titan; gubitak mase; mikrografija
Sažetak
Korozija austenitnog nerđaju EG čelika 316Ti ispitivana je u 10% hlorovodoničnoj i 10% sumporne kiseline, pomo u linearne polarizacije, elektrohemijske impedanse spektroskopije, polarizacionih merenja i merenja gubitka težine. Zaključeno je da je 316Ti nestabilan u 10% hlorovodoničnoj kiselini i pasivan u rastvoru 10% sumporne kiseline.
Reference
*** Aalco Metals Ltd, UK. http://wwweng.lbl.gov/~shuman/NEXT/MATERIALS&COMPO NENTS/Pressure_vessels/Aalco-MetalsLtd_Stainless-Steel_1.4571-316Ti_40.pdf (Accessed 1 October 2020.)
Aydoğdu, G.H., Aydinol, M.K. (2006) Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corrosion Science, 48(11): 3565-3583
Bai, L. (1991) AC impedance of faradaic reactions involving electrosorbed intermediates: Examination of conditions leading to pseudoinductive behavior represented in three-dimensional impedance spectroscopy diagrams. Journal of The Electrochemical Society, 138(10): 2897
Dhaiveegan, P., Elangovan, N., Nishimura, T., Rajendran, N. (2016) Corrosion behavior of 316L and 304 stainless steels exposed to industrial-marine urban environment: Field study. RSC Adv, 6: 47314-37324
Duana, Z., Mana, C., Dong, C., Cui, Z., Kong, D., Wangx, L., Wang (2020) Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corros. Sci, 167, article 108520
Finšgar, M., Milošev, I. (2010) Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid. Corrosion Science, 52(7): 2430-2438
Lai, W.Y., Zhao, W.Z., Yin, Z.F., Zhang, J. (2012) Electrochemical and XPS studies on corrosion behaviours of AISI 304 and AISI 316 stainless steels under plastic deformation in sulphuric acid solution. Surf. Interface Anal, 44: 505-512
Lorsbach, B., Schmitz, E. (2018) Influence of test parameters of potentiodynamic current density measurements on the determination of the pitting corrosion resistance of austenitic stainless steels. Materials and Corrosion, 69(1): 37-43
Loto, R.T. (2019) Corrosion resistance and morphological deterioration of 316Ti austenitic, GX4CrNiMo16-5-1 martensitic and 444 ferritic stainless steels in aqueous corrosive environments. Results in Physics, 14, article 102423
Loto, R.T. (2017) Study of the corrosion resistance of type 304L and 316 austenitic stainless steels in acid chloride solution. Orient J Chem, 33(3): 1090-1096
Malinović, B., Đuričić, T., Zorić, D. (2020) Corrosion behaviour of stainless steel EN 1.4301 in acid media in presence of PBTCA inhibitor. Zaštita materijala, vol. 61, br. 2, str. 133-139
Otero, E., Pardo, A., Utrilla, M.V., Pérez, F.J., Merino, C. (1997) The corrosion behaviour of AISI 304L and 316L stainless steels prepared by powder metallurgy in the presence of organic acids. Corrosion Science, 39(3): 453-463
Pardo, A., Merino, M.C., Coy, A.E., Viejo, F., Carboneras, M., Arrabal, R. (2007) Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI 316Ti and 321 stainless steels. Acta Materialia, 55(7): 2239-2251
Singh, A., Caihong, Y., Yaocheng, Y., Soni, N., Wu, Y., Lin, Y. (2019) Analyses of new electrochemical techniques to study the behavior of some corrosion mitigating polymers on n80 tubing steel. ACS Omega, 4(2): 3420-3431
Yi, Y., Cho, P., Al, Z.A., Addad, Y., Jang, C. (2013) Potentiodynamic polarization behaviour of AISI type 316 stainless steel in NaCl solution. Corrosion Science, 74: 92-97
Zakeri, M., Naghizadeh, M., Nakhaie, D., Moayed, M.H. (2016) Pit transition potential and repassivation potential of stainless steel in thiosulfate solution. J. Electrochem. Soc, 163(6): C275-C281
Zhao, B., Zhao, W., Shi, H., Li, G., Ding, Y. (2019) The effects of stabilizing treatment on microstructure and corrosion resistance of 316Ti stainless steel. Engineering Failure Analysis, 105: 961-969
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/zasmat2004339G
primljen: 05.10.2020.
prihvaćen: 22.10.2020.
objavljen u SCIndeksu: 05.02.2021.
Creative Commons License 4.0