Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 2  
Back povratak na rezultate
2018, vol. 63, br. 4, str. 171-175
Dopuna 3D Rozentalovih jednačina radi optimizacije veze između kritičnog vremena hlađenja i temperature predgrevanja kod elektrolučnog zavarivanja
Univerzitet u Beogradu, Visoka tehnička škola

e-adresamilicevic.miroslav@mts.rs
Ključne reči: temperatura predgrevanja; vreme hlađenja; zavarivanje; toplota
Sažetak
Ovde se predstavlja poboljšanje izračunavanja veličina kod elektrolučnog zavarivanja, kao što su temperatura predgrevanja i kritičnog vremena hlađenja t8/5. Ova istraživanja su rezultirala studiranjem teorije termike kod elektrolučnog zavarivanja i praktičnim radom, nakon čega su pronađeni načini da se rešavanje navedenih problema omogućava uvođenjem novih grafičkih i analitičkih zavisnosti. Provera navedenih rešenja je obavljena numeričkim primerima.
Reference
*** (1998) Welding Workbook - Data Sheet 212a. Weld. J., 77: 65
*** (2007) Standard EN 1011 - 2: Zavarivanje - preporuke za zavarivanje metalnih materijala - elektrolučno zavarivanje feritnih čelika. Deo 2
American Welding Society (1976) Welding handbook. Miami, FL, Vol. 1
American Welding Society (1978) Welding handbook. Miami, FL, Vol. 2, 7th ed. pp. 78-112, 296-330
American Welding Society (1980) Welding handbook. Miami, FL, Vol. 3, 7th ed. pp. 170-238
Choong-Mzeoung, K., Zong-Seong, K. (2001) Tube and pipe technology. Korea: POSCO, January/February
Christensen, B.N., Davies, V.D.L., Gjermundsen, K. (1965) Distribution of temperatures in kod elektrolučnog welding. British Welding Journal, p.p. 54 to 75
Gaultois, M.W. (2015) Design Principles for Oxide Thermoelectric Materials. Santa Barbara, USA: University of Califoornia, PhD Thesis
Gulaev, D. (1984) Impovements of production technologies and quality of electrically welded tubes. Kiev: Tehnika, p.p. 4-116
Hyungsuk, K. Magnetoelectric Effect and Magnetodielectric Effect in Magnetic Nanoparticles. Los Angeles: University of California, PhD Thesis
Kou, S. (2002) Welding Metallurgy. Hoboken, NJ, USA: Wiley
Lazic, V., Ivanovic, I., Sedmak, A., Rudolf, R., Lazic, M., Radakovic, Z. (2014) Numerical analysis of temperature field during hardfacing process and comparison with experimental results. Thermal Science, 18(suppl.1): 113-120
Lazić, V.N., Sedmak, A.S., Živković, M.M., Aleksandrović, S.M., Čukić, R.D., Jovičić, R.D., Ivanović, I.B. (2010) Theoretical-experimental determining of cooling time (t8/5) in hard facing of steels for forging dies. Thermal Science, vol. 14, br. 1, str. 235-246
Lesnewich, A. Weldability of steels. Stout R.D., Doty W.D. [ur.] 3rd ed
Lyttle, K.A. (1993) ASM handbook. Materials Park, OH: ASM International, Vol. 6, p. 64
Mendez, P.F., Eagar, T.W. (2001) Advanced Materials and Processes, 159: 39
Meseguer-Valdenebro, J., Martínez-Conesa, E., Miguel-Eguíac, V., Valcuende, P. (2014) Calculation of t8/5 by response surface methodology for electric arc welding applications. Thermal Science, 18(suppl.1): 149-158
Milićević, M. (2010) The Application of a New Formula of Nakaoka Coefficient in HF Inductive Welding. Journal of Mechanical Engineering, 56, 7-8, p. 483-488
Milićević, M., Stojiljković, I., Jovanović, T., Nejković, V. (2013) Opis nedostataka feritnog koncentratora kod visokofrekventnog induktivnog zavarivanja. Zavarivanje i zavarene konstrukcije, vol. 58, br. 3, str. 115-120
Milićević, M., Jovanović, T., Nejković, V. (2014) Kako smo izumeli najbolji magnetni koncentrator na svetu za visokofrekventno zavarivanje. Zavarivanje i zavarene konstrukcije, vol. 59, br. 2, str. 71-79
Milićević, M.S., Stojanović, T.M., Stanković, V., Nejković, V.M. (2015) Computers regulation HF inductive welding. Zavarivanje i zavarene konstrukcije, vol. 60, br. 3, str. 109-124
Milićević, M.S., Stojanović, T.M., Nejković, V.M. (2016) Contribution to contact temperature measurement. Zavarivanje i zavarene konstrukcije, vol. 61, br. 2, str. 63-70
o`Brien Annette,, ur. (2011) Welding handbook: Materials and applications. Miami, Fl, USA: American Welding Society, Ninth Edition,Volume 4, Part 1, p.860
Poorhaydari, K., Patchett, B.M., Ivey, D.G. (2006) Estimation of Cooling Rate in the Welding of Plates with Intermediate Thickness. Welding Journal, p.p. 149 to155
Rosenthal, D. (1946) The theory of moving sources of heat and its application to metal treatments. Transactions of the AIME, 68: str. 849-866
Rosenthal, D. (1941) Weld. J., 20: 220
Rykalin, N.N., Nikolaev, A.V. (1971) Welding Kod elektrolučnog Heat Flow. Welding in the World, 9, 3/4, pp. 112-132
Rykalin, N.N. (1974) Calculation of heat flow in welding. International Institute of Welding, Trans. Z. Paley and C. M.Adams,Jr. Document 212-350-74
Schumann, H. (1989) Metallographie. Leipzig: VEB Deutscher Verlag fuer Grundstoffindustrie
Schwartz, M.M. (1979) Metals Joining Manual. New York: McGraw-Hill
Simpson, P.G. (1960) Induction Heating - Coil and System Design. New York: Mc Graw Hill
Suzuki, S., Takamme, T. (1984) The Formation Mechanism of White Line Welded Joints of ERW Steel Pipes'. Tetsu to Hagane, Vol. 40, No 10, 153-159
 

O članku

jezik rada: engleski, srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/zzk1804171M
objavljen u SCIndeksu: 28.12.2018.