Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:10
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
Back povratak na rezultate
2020, vol. 65, br. 2, str. 163-174
Bakterijska inokulacija - postupak za stimulaciju rasta crvene deteline gajene u zagađenom zemljištu
aUniverzitet u Beogradu, Poljoprivredni fakultet
bUniverzitet Educons, Fakultet zaštite životne sredine, Sremska Kamenica

e-adresavera.karlicic@agrif.bg.ac.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Beogradu, Poljoprivredni fakultet) (MPNTR - 451-03-68/2020-14/200116)

Ključne reči: organske zagađujuće materije; crvena detelina; revegetacija; bakterije stimulatori biljnog rasta
Sažetak
Seme crvene deteline (Trifolium pratense L.), inokulisno sa nekoliko bakterija stimulatora biljnog rasta (PGPB), posejano je u supstrat kontaminiran policikličnim aromatičnim ugljovodonicima (PAHs), polihlorovanim bifenilima (PCBs) i organometalnim derivatima kalaja (OT). Cilj je bio da se utvrdi da li selektovane PGPB mogu promovisati rast crvene deteline u supstratu kontaminiranom sa nekoliko organskih zagađujućih materija. Uticaj bakterija na rast crvene deteline (visina, dužina korena i biomasa) praćen je tri meseca. Najveća visina je zabeležena kod biljaka inokulisanih sa Bacillus amyloliquefaciens D5 ARV i Pseudomonas putida P1 ARV. Rast korena je stimulisan od strane Serratia liquefaciens Z-I ARV. Ovi izolati su značajno uticali i na produkciju biomase. Ukupna biomasa dobijena tokom celog ogleda je za 70%, 48% i 33% veća u odnosu na kontrolu. Bakterijski sojevi korišćeni u ovoj studiji su prethodno potvrđeni kao PGPB kroz biohemijske i in vivo testove mešanog inokuluma na nekoliko drvenastih vrsta gajenih u jalovini. Ovaj rad prvi put beleži njihove pojedinačne efekte na jednu biljnu vrstu. Dobijeni rezultati potvrđuju da inokulacija sa nekoliko PGPB sojeva može ubrzati rast crvene deteline u zagađenom zemljištu.
Reference
Ahmad, I., Imran, M., Hussain, M.B., Hussain, S. (2017) Remediation of organic and inorganic pollutants from soil: The role of plantbacteria partnership. u: Anjum N.A. [ur.] Chemical Pollution Control with Microorganisms, New York: Nova Science Publishers, Inc, 197-243
Anderson, G.R. (1958) Ecology of Azotobacter in soil of the Palouse region: Occurrence. Soil Science, I, 86(2): 57-62
Backer, R., Rokem, J., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., Smith, D.L. (2018) Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 9: 1473-1473
de Souza, R., Ambrosini, A., Passaglia, L.M.P. (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4): 401-419
Eskandary, S., Tahmourespour, A., Hoodaji, M., Abdollahi, A. (2017) The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. Journal of Environmental Health Science and Engineering, 15(1): 1-8
Ficko, S.A., Rutter, A., Zeeb, B.A. (2010) Potential for phytoextraction of PCBs from contaminated soils using weeds. Science of The Total Environment, 408(16): 3469-3476
Gamalero, E., Glick, B.R. (2015) Bacterial Modulation of Plant Ethylene Levels. Plant Physiology, 169(1): 13-22
Gkorezis, P., Daghio, M., Franzetti, A., van Hamme, J.D., Sillen, W., Vangronsveld, J. (2016) The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Frontiers in Microbiology, 7: 1836-1836
Hou, J., Liu, W., Wang, B., Wang, Q., Luo, Y., Franks, A.E. (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere, 138: 592-598
Ite, A.E., Ibok, U.J. (2019) Role of Plants and Microbes in Bioremediation of Petroleum Hydrocarbons Contaminated Soils. International Journal of Environmental Bioremediation & Biodegradation, 7: 1-19
Jeelani, N., Yang, W., Xu, L., Qiao, Y., An, S., Leng, X. (2017) Phytoremediation potential of Acorus calamus in soils co-contaminated with cadmium and polycyclic aromatic hydrocarbons. Scientific Reports, 7(1): 1-9
Jiang, Y., Lei, M., Duan, L., Longhurst, P. (2015) Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass and Bioenergy, 83: 328-339
Jovičić-Petrović, J., Karličić, V., Radić, D., Jovanović, Lj., Kiković, D., Raičević, V. (2014) Microbial biodiversity in PAH and PCB contaminated soil as a potential for in situ bioremediation. u: The Conference on Sustainable Development of Energy, Water and Environment Systems (9th), Proceedings of, Venice-Istanbul, pp. 1-10
Karličić, V., Jovičić-Petrović, J., Radić, D., Lalević, B., Raičević, V., Jovanović, Lj. (2014) In situ bioremediation of soil polluted with organotin substrances. u: Vrvić M., Cokić Z., Tanasijević Lj. [ur.] Soil 2014: Planning and land use and landfills in terms of sustainable development and new remediation technologies, Proceedings of, Zrenjanin, pp. 43-50
Karličić, V., Radić, D., Jovičić-Petrović, J., Golubović-Ćurguz, V., Kiković, D., Raičević, V. (2015) Inoculation of Robinia pseudoacacia L. and Pinus sylvestris L. seedlings with plant growth promoting bacteria causes increased growth in coal mine overburden. u: Ivetić V., Stanković D. [ur.] The International conference Reforestation Challenges, Proceedings of, Belgrade, pp. 42-49
Karličić, V., Radić, R., Jovičić-Petrović, J., Lalević, B., Morina, F., Golubović-Ćurguz, V., Raičević, V. (2017) Use of overburden waste for London plane (Platanus × acerifolia) growth: The role of plant growth promoting microbial consortia. iForest - Biogeosciences and Forestry, 10(4): 692-699
Karličić, V.M., Radić, D.S., Jovičić-Petrović, J.P., Lalević, B.T., Jovanović, L.M., Kiković, D.D., Raičević, V.B. (2016) Isolation and characterization of bacteria and yeasts from contaminated soil. Journal of Agricultural Sciences, vol. 61, br. 3, str. 247-256
Kummerová, M., Zezulka, Š., Váňová, L., Fišerová, H. (2012) Effect of organic pollutant treatment on the growth of pea and maize seedlings. Central European Journal of Biology, 7(1): 159-166
Mesa, V., Navazas, A., González-Gil, R., González, A., Weyens, N., Lauga, B., Gallego, J.L.R., Sánchez, J., Peláez, A.I. (2017) Use of Endophytic and Rhizosphere Bacteria to Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica. Applied and Environmental Microbiology, 83(8): 411-416
Nazarov, A.V., Shestakova, E.A., Anan'yina, L.N. (2017) Effect of red clover on the microbial transformation of phenanthrene and octadecane in the soil. Eurasian Soil Science, 50(8): 971-976
Panchenko, L., Muratova, A., Dubrovskaya, E., Golubev, S., Turkovskaya, O. (2018) Dynamics of natural revegetation of hydrocarbon-contaminated soil and remediation potential of indigenous plant species in the steppe zone of the southern Volga Uplands. Environmental Science and Pollution Research, 25(4): 3260-3274
Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., Crecchio, C. (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: A review. Biology and Fertility of Soils, 51(4): 403-415
Pinto, A.P., de Varennes, A., Dias, C.M.B., Lopes, M.E. (2018) Microbial-Assisted Phytoremediation: A Convenient Use of Plant and Microbes to Clean Up Soils. u: Ansari A.A., Gill S.S., Gill R., Lanza G.R., Newman L. [ur.] Phytoremediation: Management of Environmental Contaminants, Cham: Springer International Publishing, 6: 21-87
Ramakrishna, W., Radheshyam, Y., Kefeng, L. (2019) Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology, 138: 10-18
Rohrbacher, F., St-Arnaud, M. (2016) Root Exudation: The Ecological Driver of Hydrocarbon Rhizoremediation. Agronomy, 6(1): 19-19
Rostami, S., Azhdarpoor, A., Samaei, M.R. (2017) Removal of Pyrene from Soil Using Phytobioremediation (Sorghum Bicolor-Pseudomonas). Health Scope, In Press(In Press): 62153-62153
Skála, J., Vácha, R., Čupr, P. (2018) Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?. International Journal of Environmental Research and Public Health, 15(6): 1146-1146
Sverdrup, L.E., Krogh, P.H., Nielsen, T., Kjær, C., Stenersen, J. (2003) Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba). Chemosphere, 53(8): 993-1003
Teixeira, D.A., Alfenas, A.C., Mafia, R.G., Ferreira, E.M., de Siqueira, L., Maffia, L.A., Mounteer, A.H. (2007) Rhizobacterial promotion of eucalypt rooting and growth. Brazilian Journal of Microbiology, 38(1): 118-123
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JAS2002163K
objavljen u SCIndeksu: 07.07.2020.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka