Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 2  
Back povratak na rezultate
2023, vol. 51, br. 2, str. 231-242
Nelinearna dinamička analiza meteoroloških promenljivih za region Hail, Saudijska Arabija, za period 1990-2022
aNational University of Malaysia, Faculty of Science and Technology, Malaysia
bFatimah Abdul Razak National University of Malaysia, Malaysia
cNational University of Malaysia, Malaysia

e-adresaabdulmajid_2000@yahoo.com
Projekat:
The authors acknowledge the academic support provided by the National University of Malaysia. No financial support was sought. They acknowledge the use of MATLAB and Visual Recurrence Analysis by Eugene (2003).

Ključne reči: nonlinear dynamic analysis; chaos theory; climate variables; time series; chaos detection; recurrence analysis, random forest algorithm
Sažetak
Studija primenjuje različite metode detekcije haosa na meteorološke promenljive podatke (temperatura vazduha, relativna vlažnost, površinski pritisak, padavine i brzina vetra za Hail, Saudijska Arabija) da bi se razumela nelinearna dinamika i klasifikovala njihova priroda. Pored toga, model algoritma Random Forest se koristi za predviđanje padavina i brzine vetra. Upoređeni su rezultati dobijeni klasičnim i savremenim pristupima. Utvrđeno je da su sve promenljive haotične na osnovu dimenzije korelacije, približne entropije i testa 0-1. Algoritam drveta odlučivanja o haosu dijagnostikuje temperaturu vazduha, relativnu vlažnost i brzinu vetra kao haotične, dok su padavine i površinski pritisak identifikovani kao stohastički. Ovo pokazuje da su klasične metode dobro potvrđene sa savremenim metodama. Ipak, neki od njih su u suprotnosti sa savremenim metodama. Analiza podataka za 32 godine pokazala je da nije bilo padavina u 92% vremena tokom čitavog perioda na osnovu algoritma Random Forest.
Reference
Abarbanel, H.D.I. (1995) Tools for analysing observed chaotic data. u: Smart Structures, Nonlinear Dynamics, and Control, Prentice Hall, 1-86
Ali, M., Prasad, R., Xiang, Y., Yaseen, Z.M. (2020) Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. Journal of Hydrology, 584: 124647-124647
Almulhim, T., Al, Y.M. (2022) An analysis of renewable energy investments in Saudi Arabia: A hybrid framework based on Leontief and fuzzy group decision support models. Available at SSRN 4183286
An, X., Dongxiang, J., Minghao, Z., Chao, L. (2012) Shortterm prediction of wind power using EMD and chaotic theory. Communications in Nonlinear Science and Numerical Simulation, 17(2): 1036-1042
Beaumariage, T., Kempf, K. (1994) The nature and origin of chaos in manufacturing systems. u: Proceedings of 1994 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (ASMC), IEEE, 169-174
Bensaïda, A. (2015) A practical test for noisy chaotic dynamics. SoftwareX, 3-4: 1-5
Delgado-Bonal, A., Marshak, A. (2019) Approximate entropy and sample entropy: A comprehensive tutorial. Entropy, 21(6): 541-541
Eckmann, J.-.P.P., Kamphorst, O.S., Ruelle, D. (1987) Recurrence plots of dynamical systems. EPL Europhys. Lett, 4(9): 973-977
Fraedrich, K. (1987) Estimating weather and climate predictability on attractors. Journal of the Atmospheric Sciences, 44(4): 722-728
Fraedrich, K. (1986) Estimating the dimensions of weather and climate attractors. Journal of the Atmospheric Sciences, 43(5): 419-432
Fraser, A.M., Swinney, H.L. (1986) Independent coordinates for strange attractors from mutual information. Physical Review A, 33(2): 1134-1140
Gottwald, G.A., Melbourne, I. (2009) On the validity of the 0-1 test for chaos. Nonlinear, 22(6): 1367-1367
Grassberger, P., Procaccia, I. (1983) Characterization of strange attractors. Physical Review Letters, 50(5): 346-346
Gupta, D., Kumar, V., Ayus, I., Vasudevan, M., Natarajan, N. (2021) Short-term prediction of wind power density using convolutional LSTM network. FME Transactions, vol. 49, br. 3, str. 653-663
Hense, A. (1987) On the possible existence of a strange attractor for the southern oscillation. Beitr. Phys. Atmos, 60(1): 34-47
Hussain, F.M., Rehman, S., Al-Sulaiman, F.A. (2021) Performance analysis of a solar chimney power plant for different geographical locations of Saudi Arabia. FME Transactions, vol. 49, br. 1, str. 64-71
Islam, S., Bras, R.L., Rodriguez-Iturbe, I. (1993) A possible explanation for low correlation dimension estimates for the atmosphere. Journal of Applied Meteorology, 32(2): 203-208
Jacquelin, E., Adhikari, S., Sinou, J.-.J., Friswell, M.I. (2015) Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences. Journal of Sound and Vibration, 356: 144-154
Jayawardena, A.W., Lai, F. (1994) Analysis and prediction of chaos in rainfall and stream flow time series. Journal of Hydrology, 153(1-4): 23-52
Kaheman, K., Bramburger, J.J., Kutz, J., Brunton, S.L. (2023) Saddle transport and chaos in the double pendulum. Nonlinear Dynamics, 111(8): 7199-7233
Kantz, H., Schreiber, T. (2003) Nonlinear time series analysis. Cambridge University Press, vol. 7
Kawamura, A., McKerchar, A.I., Spigel, R.H., Jinno, K. (1998) Chaotic characteristics of the Southern Oscillation Index time series. Journal of Hydrology, 204(1-4): 168-181
Kennel, M.B., Brown, R., Abarbanel, H.D.I. (1992) Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A, 45(6): 3403-3403
Kirichenko, L., Radivilova, T., Stepanenko, J. (2021) Applying recurrence plots to classify time series. u: Computational linguistics and intelligent systems, 16-26
Kraskov, A., Stögbauer, H., Grassberger, P. (2004) Estimating mutual information. Physical Review E, 69(6): 066138-066138
Kumar, A., i dr. (2023) Power generation with raindrops. u: Li X.; Rashidi M.M.; Lather R.S.; Raman R. [ur.] Emerging Trends in Mechanical and Industrial Engineering. Lecture Notes in Mechanical Engineering, Singapore: Springer
Liu, X., Gao, H., Ward, J.E., Liu, X., Yin, B., Fu, T., Chen, J., Lovley, D.R., Yao, J. (2020) Power generation from ambient humidity using protein nanowires. Nature, 578(7796): 550-554
Lorenz, E. (1963) Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2): 130-141
Marwan, N., Carmenromano, M., Thiel, M., Kurths, J. (2007) Recurrence plots for the analysis of complex systems. Physics Reports, 438(5-6): 237-329
Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J. (2002) Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Physical Review E, 66: 026702-1-026702-8
Marwan, N., Kraemer, H.K. (2023) Trends in recurrence analysis of dynamical systems. European Physical Journal Special Topics, 232(1): 5-27
Matthews, P. (2023) 0-1 test for chaos. MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral /fileexchange/25050-0-1-test-for-chaos, Retrieved February 23, 2023
Mihailović, D.T., Mimić, G., Arsenić, I. (2014) Climate predictions: The chaos and complexity in climate models. Adv. Meteorol
Mohandes, M., Rehman, S., Nuha, H., Islam, M.S., Schulze, F.H. (2021) Accuracy of wind speed predictability with heights using Recurrent Neural networks. FME Transactions, vol. 49, br. 4, str. 908-918
Nuha, H., Mohandes, M., Rehman, S., A-Shaikhi, A. (2022) Vertical wind speed extrapolation using regularized extreme learning machine. FME Transactions, vol. 50, br. 3, str. 412-421
Ocokoljić, G., Rašuo, B., Kozić, M. (2017) Supporting system interference on aerodynamic characteristics of an aircraft model in a low-speed wind tunnel. Aerospace Science and Technology, 64: 133-146
Ott, E. (2002) Chaos in dynamical systems. Cambridge University Press
Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S. (1980) Geometry from a time series. Physical Review Letters, 45(9): 712-716
Panagoulia, D., Vlahogianni, E.I. (2018) Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in central-western Greece. Atmospheric Research, 205: 33-47
Petersen, A. (2020) Arabian peninsula: Islamic archaeology. u: Smith, C [ur.] Encyclopedia of Global Archaeology, Cham: Springer
Pham, Q.B., Yang, T.C., Kuo, C.M., Tseng, H.W., Yu, P.S. (2019) Combing random forest and least square support vector regression for improving extreme rainfall downscaling. Water, 11(3): 451-451
Pincus, S.M., Goldberger, A.L. (1994) Physiological time-series analysis: What does regularity quantify?. American Journal of Physiology-Heart and Circulatory Physiology, 266(4): H1643-H1656
Rašuo, B. (2003) On solving boundary value problem in fluid mechanics by Fourier's method: Wall interference of transonic wind tunnels. u: Analysis and Simulation of Multifield Problems, Berlin-Heidelberg: Springer, 317-322
Rašuo, B., Dinulović, M., Veg, A., Grbović, A., Bengin, A. (2014) Harmonization of new wind turbine rotor blades development process: A review. Renewable and Sustainable Energy Reviews, 39: 874-882
Rehman, S., Siddiqi, A.H. (2009) Wavelet based Hurst exponent and fractal dimensional analysis of Saudi climatic dynamics. Chaos, Solitons & Fractals, 40(3): 1081-1090
Rehman, S. (2010) Temperature and rainfall variation over Dhahran, Saudi Arabia, (1970-2006). Int. J. Climatol, 30(3): 445-449
Rodríguez-Iturbe, I. (1991) Exploring complexity in the structure of rainfall. Advances in Water Resources, 14(4): 162-167
Rodriguez-Iturbe, I., Febres, D.P.B., Sharifi, M.B., Georgakakos, K.P. (1989) Chaos in rainfall. Water Resources Research, 25(7): 1667-1675
Sanni-Anibire, M.O., Zin, R.M., Olatunji, S.O. (2020) Machine learning model for delay risk assessment in tall building projects. Inter. J. Const. Manag, 22(11): 2134-2143
Sharifi, M.B., Georgakakos, K.P., Rodriguez-Iturbe, I. (1990) Evidence of deterministic chaos in the pulse of storm rainfall. Journal of the Atmospheric Sciences, 47(7): 888-893
Sivakumar, B., Jayawardena, A.W., Fernando, T.M.K.G. (2002) River flow forecasting: Use of phase-space reconstruction and artificial neural networks approaches. Journal of Hydrology, 265(1-4): 225-245
Sivakumar, B. (2016) Chaos in hydrology: Bridging determinism and stochasticity. Springer
Sivakumar, B. (2000) Chaos theory in hydrology: Important issues and interpretations. Journal of Hydrology, 227(1-4): 1-20
Sivakumar, B., Jayawardena, A.W., Li, W.K. (2007) Hydrologic complexity and classification: A simple data reconstruction approach. Hydrological Processes, 21(20): 2713-2728
Sivakumar, B., Liong, S.Y., Liaw, C.Y., Phoon, K.K. (1999) Singapore rainfall behavior: Chaotic?. Journal of Hydrologic Engineering, 4(1): 38-48
Takens, F. (1981) Detecting strange attractors in turbulence. u: Dynamical Systems and Turbulence, Warwick 1980, Berlin- Heidelberg: Springer, 366-381
Toker, D., Sommer, F.T., D'Esposito, M. (2020) A simple method for detecting chaos in nature. Communications Biology, 3(1): 11-11
Tsonis, A.A., Elsner, J.B. (1989) Chaos, strange attractors, and weather. Bulletin of the American Meteorological Society, 70(1): 14-23
Yan, B., Chan, P.W., Li, Q., He, Y., Shu, Z. (2021) Dynamic analysis of meteorological time series in Hong Kong: A nonlinear perspective. International Journal of Climatology, 41(10): 4920-4932
Yu, P.S., Yang, T.C., Chen, S.Y., Kuo, C.M., Tseng, H.W. (2017) Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. Journal of Hydrology, 552: 92-104
Zang, X., Iqbal, S., Zhu, Y., Liu, X., Zhao, J. (2016) Applications of chaotic dynamics in robotics. International Journal of Advanced Robotic Systems, 13(2): 60-60
Zbilut, J.P., Webber, C.L. (1992) Embeddings and delays as derived from quantification of recurrence plots. Physics Letters A, 171(3-4): 199-203
Zeng, X., Pielke, R.A. (1993) What does a low-dimensional weather attractor mean?. Physics Letters A, 175(5): 299-304
Zeng, X., Pielke, R.A., Eykholt, R. (1992) Estimating the fractal dimension and the predictability of the atmosphere. Journal of the Atmospheric Sciences, 49(8): 649-659
Zeng, X., Pielke, R.A., Eykholt, R.A.P. (1993) Chaos theory and its applications to the atmosphere. Bulletin of the American Meteorological Society, 74(4): 631-644
Zhang, C., Wang, X., Jiang, J., Xinwei, J., Xu, X., Liang, C., Liu, H., Atindana, A.V. (2023) Robust controller design of a semi-active quasi-zero stiffness air suspension based on polynomial chaos expansion. Journal of Vibration and Control
Zhenru, S., Jesson, M., Sterling, M. (2021) Nonlinear dynamic analysis of daily rainfall variability across the UK from 1989 to 2018. J. Hydrol, 603: 126849-126849
Zhong, K., Zheng, F., Wu, H., Qin, C.W.C., Xu, X. (2017) Dynamic changes in temperature extremes and their association with atmospheric circulation patterns in the Songhua river basin, China. Atmospheric Research, 190: 77-88
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2302231M
primljen: 15.03.2023.
prihvaćen: 15.04.2023.
objavljen u SCIndeksu: 13.05.2023.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka