Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:5

Sadržaj

članak: 1 od 1  
Back povratak na rezultate
2022, vol. 50, br. 2, str. 313-321
Eksperimentalna ispitivanja dizel motora na bazi ulja pinus silvestris sa dodatkom vodonika za poboljšanje performansi i smanjenje emisija
aAditya Engineering College, Surampalem, India
bUniversity of Petroleum & Energy Studies, Dehradun, India
cLovely Professional University
dSri Venkateswara Engineering College, Tirupati, India

e-adresapsranjit1234@gmail.com
Projekat:
The authors would like to thank the Ministry of New and Renewable Energy (MNRE), Government of India (GoI), New Delhi, for supporting the infrastructure under the financially sponsored Project No. MNRE. No. 103/143/NT to execute the experimentation and the University of Petroleum & Energy Studies(UPES), Dehradun, allows us to conduct the experimental work.

Ključne reči: Pinus Sylvestris oil; Pine oil; Hydrogen; In-direct Injection; NFPA standards; Performance; Emissions
Sažetak
Rad uglavnom ima za cilj poboljšanje performansi i smanjenje emisija izduvnih gasova dizel motora sa indirektnim ubrizgavanjem koji koristi alternativno i moderno biogorivo ulje Pinus Silvestris, koje je tradicionalno oksigenirano i dobijeno od smola drveta Pinus Silvestris. Njegova fizička i hemijska svojstva su slična običnom petro-dizel gorivu i mogu se koristiti bez transesterifikacije direktno u dizel motorima. S druge strane, niža cetanska vrednost zavisi od njegove direktne upotrebe u dizel motorima. Dakle, eksperiment je pratio komplementarni pristup dopunjavanju malih doza gasovitog vodonika (GH2), koji je veoma zapaljiv, bezbojan, bez mirisa i dosta dostupan za prevazilaženje štetne prirode emisija. Gasoviti vodonik je indukovan kroz ulaznu granu i kontrolisan vremenskim ubrizgavanjem u razvodnik (TMI) u 5% do 7% ukupne energije sa korakom od 1%. Pored dodavanja GH2, prethodno zagrevanje ulaznog vazduha u opsegu od 40 0C do 60 0C sa prirastom od 10 0C je dozvoljeno da usisava kroz isti ulazni razvodnik. Dodatak 6% GH2 i 40 0C prethodno zagrejanog vazduha pokazao je bolje rezultate od konvencionalnih dizel operacija bez ikakvih modifikacija motora. Svi potrebni standardi NFPA klase I divizije 2 grupe B u ovom eksperimentu su uzeti u obzir tokom rukovanja i upotrebe gasovitog vodonika.
Reference
Agarwal, D., Sinha, S., Agarwal, A.K. (2006) Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renewable Energy, 31(14): 2356-2369
Bhurat, S.S., Pandey, S., Chintala, V., Ranjit, P.S. (2019) Technical barriers and their solutions for deployment of HCCI engine technologies: A review. International Journal of Ambient Energy, 1-43
de Caro, S.P., et al. (2001) Interst of combaring and additive with diesel-ethanol blends for use in diesel engines. Fuel, 80(4): p. 565-574
Gritsenko, A., Shepelev, V., Zadorozhnaya, E., Shubenkova, K. (2020) Test diagnostics of engine systems in passenger cars. FME Transactions, vol. 48, br. 1, str. 46-52
Gritsenko, A., Shepelev, V., Salimonenko, G., Cherkassov, Yu., Buyvol, P. (2020) Environmental control and test dynamic control of the engine output parameters. FME Transactions, vol. 48, br. 4, str. 889-898
Kjärstad, J., Johnsson, F. (2009) Resources and future supply of oil. Energy Policy, 37(2): 441-464
Kusdiana, D., Saka, S. (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel, 80(5): 693-698
Lin, Y., Greg, W.Y.G., Chang, C. (2007) Combustion characteristics of waste-oil produced biodiesel/diesel fuel blends. Fuel, 86(12): 1772-1780
Mittelbach, M., Tritthart, P. (1988) Diesel fuel derived from vegetable oils, III: Emission tests using methyl esters of used frying oil. Journal of the American Oil Chemists' Society, 65(7): 1185-1187
Mohibbe, A.M., Waris, A., Nahar, N.M. (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass and Bioenergy, 29(4): 293-302
Nestorović, D., Jovanović, V.V., Manić, N.G., Stojiljković, D.D. (2012) Engine and road tests of blends of biodiesel and diesel fuel. FME Transactions, vol. 40, br. 3, str. 127-133
Perkins, L.A., Peterson, C.L., Auld, D.L. (1991) Durability testing of transesterified winter rape oil (Brassica napus L.) as fuel in small bore, multi-cylinder, DI, CI engines. SAE transactions, 545-556
Rakopoulos, C.D., Rakopoulos, D.C., Hountalas, D.T., Giakoumis, E.G., Andritsakis, E.C. (2008) Performance and emissions of bus engine using blends of diesel fuel with bio-diesel of sunflower or cottonseed oils derived from Greek feedstock. Fuel, 87(2): 147-157
Rakopoulos, C.D., Dimaratos, A.M., Giakoumis, E.G., Rakopoulos, D.C. (2010) Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends. Energy, 35(12): 5173-5184
Ramadhas, A.S., Jayaraj, S., Muraleedharan, C. (2004) Use of vegetable oils as I.C. engine fuels: A review. Renewable Energy, 29(5): 727-742
Ranjit, P.S., Chintala, V. (2022) Direct utilization of preheated deep fried oil in an indirect injection compression ignition engine with waste heat recovery framework. Energy, p. 122910
Ranjit, P.S. (2014) Studies on Hydrogen Supplementation of SVO Operated IDI CI Engine for Performance Improvement and Reduction in Emissions. u: Mechanical Engineering, Dehradun: University of Petroleum & Energy Studies, 135
Ranjit, P.S., Sharma, P.K., Saxena, M. (2014) Experimental Investigations on influence of Gaseous Hydrogen(GH2) Supplementation in InDirect Injection (IDI) Compression Ignition engine fuelled with Pre-Heated Straight Vegetable Oil(PHSVO). International Journal of Scientific & engineering Reserach (IJSER), 5(10)
Ranjit, P.S., Chintala, V. (2020) Impact of liquid fuel injection timings on gaseous hydrogen supplemented -preheated straight vegetable oil (SVO) operated compression ignition engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-22
Ranjit, P.S., Kumar, D.S., Venkata, K.V. (2021) Experimental Investigation on Influence of Injection Pressure on Gaseous Hydrogen Supplemented SVO operated IDI CI Engine. u: Materials Today: Proceedings
Ranjit, P.S., Khatri, N., Saxena, M., et al. (2014) Studies on Combustion and Emission Characteristics of an IDI CI Engine by Using 40% SVO Diesel Blend Under Different Preheating Conditions. Global Journal of Research Analysis (GJRA), 1(21): p. 43-46
Ranjit, P.S., Khatri, N., Saxena, M., et al. (2014) Studies on influence of Turbocharger on Performance Enhancement and Reduction in Emissions of an IDI CI engine. Global Journal of Research Analysis (GJRA), 1(21): p. 239-248
Ranjit, P.S., N.K., Mukesh, S., et al. (2014) Studies on various Performance, Combustion & Emission Characteristics of an IDI CI Engine with Multi-hole injector at different Injection Pressures and using SVO-Diesel blend as fuel. International Journal of Emerging Technology and Advanced Engineering, 4(4): 340-344
Ranjit, P.S., Kamesh, V.V., Saravanan, A., Dash, S.K., Bhurat, S.S., Mahesh, S.G. (2021) Experimental Investigations on Schleichera Oleosa (SO) based biodiesel operated Indirect injection (IDI) diesel engine for Performance Enhancement and Reduction in Emissions. IOP Conference Series: Materials Science and Engineering, 1057(1): 012036
Ranjit, P.S., Saxena, M. (2013) Prospects of Hydrogen utilization in Compression Ignition Engines-A Review. International Journal of Scientific Research (IJSR), 2(2): 137-140
Ranjit, P.S., Saxena, M. (2012) State-of-the-art of Storage and Handling issues related to High Pressure Gaseous Hydrogen to make use in Internal Combustion engines. International Journal of Scientific & Engineering Research (IJSER), 3(9): 1-17
Seidel, A. (2013) Kirk-Othmer chemical technology of cosmetics. John Wiley & Sons
Shepelev, V., Gritsenko, A., Salimonenko, G. (2021) Control of hydrocarbon emissions when changing the technical condition of the exhaust system of modern cars. FME Transactions, vol. 49, br. 3, str. 749-755
Singh, S.P., Singh, D. (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable and Sustainable Energy Reviews, 14(1): 200-216
Subramanian, K.A. (2011) A comparison of water-diesel emulsion and timed injection of water into the intake manifold of a diesel engine for simultaneous control of NO and smoke emissions. Energy Conversion and Management, 52(2): 849-857
Tzirakis, E., Karavalakis, G., Schinas, P., Korres, D., Karonis, D., Stournas, S., Zannikos, F. (2006) Diesel-water Emulsion Emissions and Performance Evaluation in Public Buses in Attica Basin. SAE Technical Paper Series
Vallinayagam, R., Vedharaj, S., Yang, W.M., Lee, P.S., Chua, K.J.E., Chou, S.K. (2013) Combustion performance and emission characteristics study of pine oil in a diesel engine. Energy, 57: 344-351
Wimmer, T. (1995) Process for the production of fatty acid esters of lower alcohols. Google Patents
Wu, F., Wang, J., Chen, W., Shuai, S. (2008) Effects of Different Biodiesels and their Blends with Oxygenated Additives on Emissions from a Diesel Engine. SAE Technical Paper Series
Yilmaz, N., Sanchez, T.M. (2012) Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends. Energy, 46(1): 126-129
Zhang, X., Gao, G., Li, L., Wu, Z., Hu, Z., Deng, J. (2008) Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil. SAE Technical Paper Series
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2201313R
primljen: 01.07.2021.
prihvaćen: 01.02.2022.
objavljen u SCIndeksu: 10.06.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka