- citations in SCIndeks: 0
- citations in CrossRef:[1]
- citations in Google Scholar:[
]
- visits in previous 30 days:14
- full-text downloads in 30 days:11
|
|
2018, vol. 68, iss. 1, pp. 40-49
|
Possibility of aluminium/magnesium exchange in composite rocket propellants
Mogućnost zamene aluminijuma magnezijumom u kompozitnim raketnim gorivima
Abstract
Composite solid propellants based on ammonium perchlorate/hydroxyterminated polybutadiene/isophorone dyisocyanate including two metal components: aluminium and magnesium with different contents have been represented in this paper. The mass of metal powder has increased in relation to oxidant, with constant bimodal fraction ratio and total solid phase. Parameters of burning rate laws, apparent viscosity, uniaxial mechanical characteristic, density and energetic values have been determined and compared in accordance to the propellants of the smoke reduction research.
Sažetak
U radu su prikazana istraživanja kompozitnih raketnih goriva na bazi amonijum perhlorata, hidroksiterminiranog polibutadiena i izoforon diizocijanata koji sadrže jednu od dve metalne komponente, aluminijum ili magnezijum, različitih sadržaja u gorivu. Masa metalnog praha je povećavana na račun oksidatora, konstantnog bimodalnog sastava, uz konstantan udeo čvrste faze. Određivani su parametri zakona brzine sagorevanja, vrednosti prividnog viskoziteta, jednoosne mehaničke karakteristike, gustina i energetske vrednosti i međusobno poređene sa rezultatima istraživanja dimljivih sastava.
|
|
|
References
|
|
Babuk, V. A. (2007) Problems in studying formation of smoke oxide particles in combustion of aluminized solid propellants. Combustion, Explosion, and Shock Waves, 43(1): 38-45
|
|
Bennett, R.R. (1995) Low acid producing solid propellants. in: Propellants and fuels: Aerospace Environmental Technology Conference, NASA Marshall Space Flight Center, pp. 105-114
|
2
|
Brzić, S.J., Jelisavac, L.N., Galović, J.R., Simić, D.M., Petković, J.Lj. (2014) Viscoelastic properties of hydroxyl-terminated poly(butadiene)-based composite rocket propellants. Hemijska industrija, vol. 68, br. 4, str. 435-443
|
|
Cai, W., Thakre, P., Yang, V. (2008) A Model of AP/HTPB Composite Propellant Combustion in Rocket-Motor Environments. Combustion Science and Technology, 180(12): 2143-2169
|
1
|
Keiichi, H., Akira, I. (1985) Enhancement of Matrix/Filler Adhesion in HMX/HTPB Composite Propellant. Propellants, Explosives, Pyrotechnics, No. 10, p. 176
|
|
Kubota, N. (2015) Combustion of Composite Propellants. Weinheim, Germany: Wiley, 195-252
|
|
Kubota, N. (2007) Propellants and Explosives, Thermochemical Aspects of Combustion. Weinheim, Germany, Second, Completely Revised and Extended Edition, p. 74
|
|
Mahanta, A.K., Pathak, D.D. (2010) Recent Advances in Development of Eco-friendly Solid Composite Propellants for Rocket propulsion. Res. J. Chem. Environ., Vol. 14(3), pp. 94-103. Sept
|
3
|
Meyer, R., Köhler, J., Homburg, A. (2002) Explosives. Wiley-VCH, Fifth Edition
|
1
|
Rodić, V., Bogosavljević, M., Milojković, A., Brzić, S., Fidanovski, B., Gligorijević, N. (2017) Preliminarna istraživanja kompozitnih raketnih goriva sa oktogenom. Scientific Technical Review, vol. 67, br. 1, str. 3-12
|
1
|
Shalini, C., Pragnesh, N.D. (2014) Solid propellants: AP/HTPB composite propellants. Gujarat, India: Krantiguru Shyamji Krishna Verma Kachchh University-Department of Chemistry, Review
|
|
Tokui, H., Iwama, A. (1991) Pot Life Problem and its measure with a reduced smoke propellant production. Propellants, Explosives, Pyrotechnics, 16(3): 105-109
|
|
Venkatachalam, S., Santhosh, G., Ninan, K.N. (2002) High energy oxidisers for advanced solid propellants and explosives: Introduction to explosives and propellants advances in solid propellant technology. in: P1 International HEMS1 Workshop, Ranchi, India, Chapter 1, pp. 87-106
|
|
|
|