- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:7
- preuzimanja u poslednjih 30 dana:6
|
|
2018, vol. 22, br. 1, str. 18-22
|
Proizvodnja β-amilaza pomoću novog bakterijskog soja Paenibacillus chitinolyticus CKS1 na komercijalnim i otpadnim supstratima
β-amylase production by a novel strain Paenibacillus chitinolyticus CKS1 using commercial and waste substrates
aUniverzitet u Beogradu, Tehnološko-metalurški fakultet, Katedra za biohemijsko inženjerstvo i biotehnologiju bUniverzitet u Beogradu, Institut za nuklearne nauke Vinča, Beograd-Vinča
e-adresa: kmihajlovski@tmf.bg.ac.rs
Projekat: Primena biotehnoloških metoda u održivom iskorišćenju nus-proizvoda agroindustrije (MPNTR - 31035)
Ključne reči: Paenibacillus chitinolyticus CKS1; fermentacija; aktivnost β-amilaza; šećerni alkohol; otpadni billjni supstrat(PWS)
Keywords: Paenibacillus chitinolyticus CKS1; fermentation; β-amylase production; sugar alcohol; plant waste substrate (PWS)
Sažetak
Amilaze predstavljaju grupu industrijski veoma važnih enzima koji hidrolizuju skrob do glukoze, maltoze i različitih oligosaharida. Bakterijski izolat Paenibacillus chitinolyticus CKS1, izolovan iz zemljišta četinarske šume, pokazao je sposobnost proizvodnje β-amilaza tokom svog rasta na različitim komercijalnim ali i na otpadnim supstratima. Maksimalna aktivnosti β-amilaza koja je iznosila 0,820 U/mL postignuta je korišćenjem izomaltideksa, šećernog alkohola, u koncentraciji od 0,5% (w/v), kao supstrata za rast mikroorganizma i proizvodnju enzima. U podlozi sa skrobom (0,5% w/v) i sa dodatkom 0,05% (v/v) etanola, nakon 48h fermentacije, maksimum aktivnosti β-amilaza iznosila je 0,518 U/mL. Najnoviji trendovi u proizvodnji enzima odnose se na korišćenje različitih otpadnih sirovina agroindustrijskog porekla kao supstrata za rast mikroorganizma. Soj CKS1 je pokazao mogućnost korišćenja otpadnog biljnog materijala kao supstrata za rast i proizvodnju enzima amilaza. Otpadni biljni supstrat (PWS), činila je biljna masa zaostala nakon etanolne ekstrakcije različitog lekovitog bilja (cveta nevena i kamilice, lista matičnjaka, artičoke, koprive, timijana, nadzemnog dela hajdučke trave, lincure, jagorčevine i valerijane i semena divljeg kestena i gloga). Ova biljna biomasa, iz koje su ekstrahovane bioaktivne materije, meša se i odlaže kao takva u vidu otpada. Nakon rasta u podlozi sa 1,0 % (w/v) PWS, soj CKS1 proizveo je β-amilaze sa aktivnošću od 0,569 U/mL. Ovi reziltati ukazuju na mogućnost iskorišćenja otpadne biljne biomase, zaostale nakon alkoholne ekstrakcije lekovitog bilja, u procesima ekonomičnije proizvodnje amilaza. Korišćenje otpadne sirovine u mikrobnim procesima proizvodnje enzima je i ekološki mnogo prihvatljivije usled uticaja na smanjene skladištenja otpada a samim tim i sveukupnog zagađenje životne sredine.
Abstract
Amylases are industrially important enzymes which could convert starch to glucose, maltose and oligosaccharides. A bacterial strain designated as Paenibacillus chitinolyticus CKS1which was isolated from the soil of the coniferous forest, produced β-amylases using different commercial and waste substrates. Maximum β-amylases activity of 0.820 U/mL was obtained using a sugar alcohol-isomaltidex (0.5% w/v), as a substrate for microorganism growth and enzyme production. After 48 h of fermentation in a medium that contained starch (0.5%, w/v) and 0.05% v/v of ethanol, CKS1 produced β-amylase with the activity of 0.518 U/mL. The latest trends in enzyme production include utilisation of various waste products, mainly of agroindustrial origin, as a substrate for microorganisms growth. The strain CKS1 was also able to grow and produce β-amylases by using plant waste material. The plant waste substrate (PWS) contained plant biomass that is left after the ethanol extraction of various medicinal herbs (marigold and chamomile flowers, artichoke leaf, lemon balm leaf, nettle leaf, thyme leaf, yarrow shoot, yellow gentian shoot, primrose shoot, valerian shoot and chestnut and hawthorn seeds).This mixture of dried plant biomass is dissposed as such as a waste. In a medium with 0.1% (w/v) of PWS, CKS1 produced β-amylases with a maximum activity of 0.569 U/mL. The results show the potential of utilising waste plant biomass, left after ethanol extraction of medicinal herbs, in production of amylases. The application of microorganisms in β-amylase production using waste substrate is economically and environmentally accepted.
|
|
|
Reference
|
|
Ajayi, A., Fagade, O. (2010) Utilization of corn starch as sustrate for ß-Amylase by Bacillus SPP. African Journal of Biomedical Research, 6 (1), 37-42
|
|
Anto, H., Trivedi, U., Patel, K. (2006) α-Amylase production by Bacillus cereus MTCC 1305 using solid-state fermentation. Food Technology and Biotechnology, 44 (2): 241-245
|
|
Asgher, M., Asad, M. J., Rahman, S.U., Legge, R.L. (2007) A thermostable α-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. Journal of Food Engineering, 79(3): 950-955
|
|
Bernfeld, P. (1955) Amylases, α and β. Elsevier BV, str. 149-158
|
|
Cotârleţ, M. (2013) Medium optimization for the production of cold-active beta amylase by psychrotrophic Streptomyces MIUG 4 alga using response surface methodology. Microbiology, 82(2): 147-154
|
|
de Vos, P., Garrity, G., Jones, D., Krieg, N., Ludwig, W., Rainey, F., Schleifer, K.H., Whitman, W. (2009) Bergey's manual of systematic bacteriology (Volume three: The firmicutes). London-New York-Dordrecht-Heidelberg: Springer, Editor in Chief: Michael Goodfellow. Segundaedición
|
1
|
Gangadharan, D., Sivaramakrishnan, S., Nampoothiri, M.K., Sukumaran, R.K., Pandey, A. (2008) Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource technology, 99(11): 4597-602
|
|
Gaouar, O., Zakhia, N., Aymard, C., Rios, G.M. (1998) Production of maltose syrup by bioconversion of cassava starch in an ultrafiltration reactor. Industrial Crops and Products, 7(2-3): 159-167
|
1
|
Gupta, R., Gigras, P., Mohapatra, H., Goswami, V.K., Chauhan, B. (2003) Microbial .alpha.-amylases: A biotechnological perspective. Process Biochemistry, 38(11): 1599-1616
|
|
Hensley, D.E., Smiley, K.L., Boundy, J.A., Lagoda, A.A. (1980) Beta-Amylase production by Bacillus polymyxa on a corn steep-starch-salts medium. Applied and Environmental Microbiology, 39 (3): 678-680
|
|
Ikram-ul-Haq,, Ashraf, H., Iqbal, J., Qadeer, M. (2003) Production of alpha amylase by Bacillus licheniformis using an economical medium. Bioresource Technology, 87(1): 57-61
|
|
Ikram-Ul-Haq, H.U., Zeeshan, M., Mohsin, J.M. (2012) Solid state fermentation for the production of α-amylase by Paenibacillus amylolyticus. Pakistan Journal of Botany, 341-346; 44
|
|
Mihajlovski, K.R., Carević, M.B., Dević, M.Lj., Šiler-Marinković, S., Rajilić-Stojanović, M.D., Dimitrijević-Branković, S. (2015) Lignocellulosic waste material as substrate for Avicelase production by a new strain of Paenibacillus chitinolyticus CKS1. International Biodeterioration & Biodegradation, 104: 426-434
|
|
Mihajlovski, K.R., Radovanović, N.R., Miljković, M.G., Šiler-Marinković, S., Rajilić-Stojanović, M.D., Dimitrijević-Branković, S.I. (2015) β-Amylase production from packaging-industry wastewater using a novel strain Paenibacillus chitinolyticus CKS 1. RSC Advances, 5(110): 90895-90903
|
|
Mihajlovski, K.R., Radovanović, N.R., Veljović, Đ.N., Šiler-Marinković, S.S., Dimitrijević-Branković, S.I. (2016) Improved β-amylase production on molasses and sugar beet pulp by a novel strain Paenibacillus chitinolyticus CKS1. Industrial Crops and Products, 80: 115-122
|
|
Modelska, M., Binczarski, M., Dziugan, P., Karski, S., Witońska, I. (2015) Waste biomass as a raw material for furfural production. Journal on Processing and Energy in Agriculture, vol. 19, br. 3, str. 120-122
|
|
Ohno, N., Ijuin, T., Song, S., Uchiyama, S., Shinoyama, H., Ando, A., Fujii, T. (1992) Purification and Properties of Amylases Extracellularly Produced by an Imperfect Fungus, Fusidium sp. BX-1 in a Glycerol Medium. Bioscience, Biotechnology, and Biochemistry, 56(3): 465-471
|
|
Olufunke, F.T., Azeez, I.I. (2012) Purification and Characterization of Beta-Amylase of Bacillus subtilis Isolated from Kolanut Weevil. Journal of Biology and Life Science, 4(1):
|
1
|
Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R. (2000) Advances in microbial amylases. Biotechnology and Applied Biochemistry, 31(2): 135-152
|
1
|
Rajagopalan, G., Krishnan, C. (2008) Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource technology, 99(8): 3044-50
|
|
Saxena, R., Singh, R. (2011) Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp. Brazilian Journal of Microbiology, 42(4): 1334-1342
|
1
|
Šuput, D., Lazić, V., Hromiš, N., Popović, S., Pezo, L., Lončar, B., Nićetin, M. (2014) Effect of black cumin oil on mechanical and structural characteristics of starch based edible films. Journal on Processing and Energy in Agriculture, vol. 18, br. 4, str. 154-157
|
1
|
Šuput, D., Lazić, V., Pezo, L., Radulović, A., Popović, S., Hromiš, N., Bulut, S. (2015) Structural changes in starch during starch based edible films synthesis. Journal on Processing and Energy in Agriculture, vol. 19, br. 3, str. 139-142
|
2
|
Šuput, D.Z., Lazić, V.L., Jelić, A., Lević, L.B., Pezo, L.L., Hromiš, N.M., Popović, S. (2013) The effect of sorbitol content on the chracteristics of starch based edible films. Journal on Processing and Energy in Agriculture, vol. 17, br. 3, str. 106-109
|
|
Teotia, S., Khare, S., Gupta, M. (2001) An efficient purification process for sweet potato beta-amylase by affinity precipitation with alginate. Enzyme and Microbial Technology, 28(9-10): 792-795
|
|
van der Maarel, M.J.E.C., Veen, A., Wijbenga, D.J. (2000) Paenibacillus granivorans sp. nov., a new Paenibacillus Species which Degrades Native Potato Starch Granules. Systematic and Applied Microbiology, 23(3): 344-348
|
|
|
|