Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:16

Sadržaj

članak: 5 od 11  
Back povratak na rezultate
2019, vol. 25, br. 2, str. 9-16
Uticaj suše na fiziološke odgovore biljaka kukuruza dobijenih iz semena različite starosti
aUniverzitet u Beogradu, Poljoprivredni fakultet
bUniverzitet u Beogradu, Biološki fakultet
cUniverzitet u Beogradu, Centar za multidisciplinarne studije
dInstitut za kukuruz 'Zemun polje', Beograd-Zemun

e-adresaljprokic@agrif.bg.ac.rs
Projekat:
Modifikacije antioksidativnog metabolizma biljaka sa ciljem povećanja tolerancije na abiotski stres i identifikacija novih biomarkera sa primenom u remedijaciji i monitoringu degradiranih staništa (MPNTR - 43010)
Savremeni biotehnološki pristup rešavanja problema suše u poljoprivredi Srbije (MPNTR - 31005)

Sažetak
Suša nastaje kao posledica klimatskih promena, koja negativno utiče na rast i razvoj biljaka, a to dovodi do smanjenja prinosa. Cilj ovog rada bio je da se istraži efekat suše na fiziološke reakcije biljaka kukuruza (IP3722), koje su dobijene iz semena različite starosti (regenerisano 2012. i 2016.) i različitih prethodnih iskustava (semena koja su formirana 2012. su bila u većoj meri izložena suši nego ona iz 2016.). Suša je kod oba uzorka dovela do smanjenja sveže i suve mase nadzemnog dela biljke, što je bilo praćeno opadanjem lisne površine i stomatalne provodljivosti. Tretmanom suše su indukovani hemijski signali (ABA i pH) i hidraulički signal (vodni potencijal), koji su uticali na provodljivost stoma. Podaci su pokazali da hidraulički signal ima podjednak udeo na zatvaranje stoma u tretmanu D2012 i D2016. Takođe, ABA kao hemijski signal dovodi do zatvaranja stoma, ali ovaj efekat zavisi od toga da li ABA potiče iz korena ili lista. ABA poreklom iz lista je imala značajniji doprinos u zatvaranju stoma kod D2012, dok ABA poreklom iz korena i pH kod tretmana D2016.
Reference
Achard, P., Cheng, H., de Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., van der Straeten, D., Peng, J., Harberd, N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science, 311(5757): 91
Alvarez, S., El, M., Schroeder, S.G., Schachtman, D.P. (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Cell and Environment, 31: 325-340
Anđelković, V., Ignjatović-Mićić, D., Vančetović, J., Babić, M. (2012) Integrated approach to improve drought tolerance in maize. Selekcija i semenarstvo, vol. 18, br. 2, str. 1-18
Asch, F. (2000) Laboratory Manual on Determination of Abscisic Acid by indirect Enzyme Linked Immuno Sorbent Assay (ELISA). The Royal Veterinary and Agricultural University, Technical Series 1-2000; 1-21
Aslam, M., Maqbool, A.M., Cengiz, R. (2015) Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanism, Global Achievements and Biological Strategies for Improvement. Cham: Springer International Publishing
Benešová, M., Holá, D., Fischer, L., Jedelský, P.L., Hnilička, F., Wilhelmová, N., Rothová, O., Kočová, M., Procházková, D., Honnerová, J., Fridrichová, L., Hniličková, H. (2012) The physiology and proteomics of drought tolerance in maize: Early stomatal closure as a cause of lower tolerance to short-term dehydration?. PloS One, 7(6): e38017
Chaves, M.M., Flexas, J., Pinheiro, C. (2009) Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4): 551-560
Chaves, M.M., Maroco, J.P., Pereira, J.S. (2003) Understanding plant responses to drought: From genes to the whole plant. Functional Plant Biology, 30(3): 239-264
Daryanto, S., Wang, L., Jacinthe, P.A. (2016) Global synthesis of drought effects on maize and wheat production. PLoS One, 11(5): e0156362-e0156362
Dodd, I.C. (2007) Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling of abscisic acid. Functional Plant Biology, 34(5): 439-448
Felle, H.H., Herrmann, A., Hückelhoven, R., Kogel, K.-.H. (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress response and defence factor in barley (Hordeum vulgare). Protoplasma, 227(1): 17-24
Gallardo, K., Job, C., Groot, S.P.C., Puype, M., Demol, H., Vandekerckhove, J., Job, D. (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiology, 126(2): 835-848
Grzesiak, M.T., Waligórski, P., Janowiak, F., Marcińska, I., Hura, K., Szczyrek, P., Głąb, T. (2013) The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiologiae Plantarum, 35(2): 549-565
Hartung, W., Radin, J.W. (1989) Abscisic acid in the mesophyll apoplast and in the root xylem sap of water-stressed plants: The significance of pH gradients. Current Topics Plant Biochemistry and Physiology, 8: 110-124
Jia, W.S., Davies, W.J. (2007) Modification of Leaf Apoplastic pH in Relation to Stomatal Sensitivity to Root-Sourced Abscisic Acid Signals. Plant Physiology, 143(1): 68-77
Khan, M.B., Hussain, N., Iqbal, M. (2001) Effect of water stress on growth and yield components of maize variety YHS 202. Journal Research (Sci), 12: 15-18
Mangani, R., Tesfamariam, E.E., Bellocchi, G., Hassen, A. (2018) Growth, development, leaf gaseous exchange, and grain yield response of maize cultivars to drought and flooding stress. Sustainability, 10(10): 3492-3492
Misson, L., Limousin, J.M., Rodriguez, R., Letts, M.G. (2010) Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant, Cell & Environment, 33(11): 1898-1910
Moles, T.M., Mariotti, L., de Pedro, L.F., Guglielminetti, L.F., Picciarelli, P., Scartazza, A. (2018) Drought induced changes of leaf-to-root relationships in two tomato genotypes. Plant Physiology and Biochemistry, 128: 24-31
Popović, A., Babić, V., Kravić, N., Sečanski, M., Prodanović, S. (2014) Mogući pravci oplemenjivanja i poljoprivredne mere u cilju prilagođavanja biljaka na klimatske promene u Srbiji. Selekcija i semenarstvo, vol. 20, br. 2, str. 59-72
Prokić, L., Jovanović, Z., McAinsh, R.M., Vučinić, Z., Stikić, R. (2006) Species-dependent changes in stomatal sensitivity to abscisic acid mediated by external pH. Journal of Experimental Botany, 57: 675-683
Prokić, L., Stikić, R. (2011) Effects of different drought treatments on root and shoot development of the tomato wild type and flacca mutant. Archives of Biological Sciences, vol. 63, br. 4, str. 1167-1171
Quarrie, S.A., Whitford, P.N., Appleford, N.E.J., Wang, T.L., Cook, S.K., Henson, I.E., Loveys, B.R. (1988) A monoclonal antibody to (S)-abscisic acid: Its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta, 173(3): 330-339
Riboldi, L.B., Oliveira, R.F., Angelocci, L.R. (2016) Leaf turgor pressure in maize plants under water stress. Australian Journal of Crop Science, 10(6): 878-886
Saradadevi, R., Bramley, H., Siddique, K.H.M., Edwards, E., Palta, J.A. (2014) Contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought. Field Crops Research, 162: 77-86
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T. (1965) Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668): 339-346
Takahashi, S., Murata, N. (2008) How do environmental stresses accelerate photoinhibition?. Trends in Plant Science, 13(4): 178-182
Wilkinson, S., Davies, W.J. (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant, Cell and Environment, 25(2): 195-210
Zgallai, H., Steppe, K., Lemeur, R. (2006) Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain antioxidative enzymes in tomato plants. Journal of Integrative Plant Biology, 48(6): 679-685
Zhang, J., Davies, W.J. (1989) Sequentional response of whole plant water relations towards prolonged soil drying and the mediation by xylem sap ABA concentration in the regulation of stomatal behavior of sunflower plants. New Phytologist, 113: 167-174
Zhang, J., Jia, W., Yang, J., Ismail, A.M. (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97(1): 111-119
Zhang, J., Davies, W.J. (1990) Does ABA in the xylem control the rate of leaf growth in the soil-dried maize and sunflower plants?. Journal of Experimental Botany, 41(9): 1125-1132
 

O članku

jezik rada: srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/SelSem1902009P
objavljen u SCIndeksu: 14.02.2020.
Creative Commons License 4.0

Povezani članci