Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 8  
Back povratak na rezultate
Efekat brzine klizanja na ferofluidnu prevlaku kod uzdužnih hrapavih koničnih ploča
aFaculty of Engineering and Technology, Department of Applied Science, Parul Institute of Technology, Parul University, Limda, Vadodara, Gujarat, India
bDepartment of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Anand, Gujarat, India

e-adresapatel.jimitphdmarch2013@gmail.com, gm.deheri@rediffmail.com
Ključne reči: konične ploče; magnetna tečnost; uzdužna hrapavost; brzina klizanja
Sažetak
U ovom radu dat je pokušaj ispitivanja i analize efekta brizne klizanja na performanse prevlake sa magnetnom tečnošću kod koničnih ploča uz uzimanje u obzir uzdužnog obrasca hrapavosti. Klizni model Biversa i Džozefa (Beavers and Joseph) korišćen je kako bi se izračunao efekat brzine klizanja. Uzet je stohastički usrednjen model Kristensena i Tondera (Christensen and Tonder) kako bi se procenio efekat uzdužne hrapavosti. Stohastički usrednjene jednačine Rejnoldsovog tipa rešene su kako bi se dobila raspodela pritiska koja rezultira izračunavanjem kapaciteta nošenja tereta. Rezultati pokazuju da se kombinovani negativni efekat brzine klizanja i hrapavosti može prevazići u velikoj meri pozitivnim efektom magnetizacije i standardnom devijacijom u slučaju negativno iskošene hrapavosti. Ovaj efekat se dalje pojačava kada je varijacija (-ve) na mestu. Značajan aspekt našeg istraživanja jeste da uprkos negativnom efektu brzine klizanja, hrapavi sistem zadržava određenu količinu tereta, čak i u odsutnosti toka koji se retko viđa u slučaju tradicionalnih koničnih sistema sa lubrikantom.
Reference
Adamu, G., Sinha, P. (2012) Thermal and Roughness Effects in a Tilted Pad Slider Bearing Considering Heat Conduction Through the Pad and Slider. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 82(4): 323-333
Agrawal, V.K. (1986) Magnetic-fluid-based porous inclined slider bearing. Wear, 107(2): 133-139
Ahmad, N., Singh, J.P. (2007) Magnetic fluid lubrication of porous-pivoted slider bearings with slip velocity. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 221(5): 609-613
Andharia, P.I., Deheri, G. (2010) Longitudinal roughness effect on magnetic fluid‐based squeeze film between conical plates. Industrial Lubrication and Tribology, 62(5): 285-291
Beavers, G.S., Joseph, D.D. (1967) Boundary conditions at a naturally permeable wall. Journal of Fluid Mechanics, 30, Part 1, str. 197-207
Christensen, H., Tonder, K.C. (1969) Tribology of rough surfaces: Stochastic models of hydrodynamic lubrication. u: SINTEF Report, br. 10/69-18
Christensen, H., Tonder, K.C. (1969) Tribology of rough surfaces: Parametric study and comparison of lubrication models. u: SINTEF Report, br. 22/69-18
Christensen, H., Tonder, K.C. (1970) The hydrodynamic lubrication of rough bearing surfaces of finite width. u: ASME-ASLE lubrication conference, Paper br. 70-lub-7
Deheri, G.M., Abhangi, N. (2011) Numerical modelling of a magnetic fluid-based squeeze film between rotating transversely rough curved circular plates. International Journal of Computational Materials Science and Surface Engineering, 4(3): 185
Deheri, G.M., Andharia, P.I., Patel, R.M. (2005) Transversely Rough Slider Bearings with Squeeze Film formed by a Magnetic Fluid. Int. Journal of Applied Mechanics and Engineering, (10): 53-76
Deheri, G.M., Patel, J.R. (2011) Magnetic Fluid Based Squeeze Film in a Rough Porous Parallel Plate Slider Bearing, Annals of Faculty Engineering Hunedoara. International Journal of Engineering, IX (3), 443-448
Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., Soliman, H.H. (2002) Roughness parameters. Journal of Materials Processing Technology, 123(1): 133-145
Guha, S.K. (1993) Analysis of dynamic characteristics of hydrodynamic journal bearings with isotropic roughness effects. Wear, 167(2): 173-179
Gupta, J.L., Deheri, G.M. (1996) Effect of Roughness on the Behavior of Squeeze Film in a Spherical Bearing. Tribology Transactions, 39(1): 99-102
Gururajan, K., Prakash, J. (2000) Effect of Surface Roughness in a Narrow Porous Journal Bearing. Journal of Tribology, 122(2): 472
Nada, G.S., Osman, T.A. (2007) Static Performance of Finite Hydrodynamic Journal Bearings Lubricated by Magnetic Fluids with Couple Stresses. Tribology Letters, 27(3): 261-268
Neuringer, J.L., Rosensweig, R.E. (1964) Magnetic Fluids,. Physics of Fluids, 7(12): 1927
Patel, J.R., Deheri, G. (2014) Shliomis model-based magnetic squeeze film in rotating rough curved circular plates: a comparison of two different porous structures. International Journal of Computational Materials Science and Surface Engineering, 6(1): 29
Patel, J.R., Deheri, G.M. (2015) Jenkins model based magnetic squeeze film in curved rough circular plates considering slip velocity: A comparison of shapes. FME Transactions, vol. 43, br. 2, str. 144-153
Patel, J.R., Deheri, G.M. (2013) A comparison of porous structures on the performance of a magnetic fluid based rough short bearing. Tribology in Industry, vol. 35, br. 3, str. 177-189
Patel, J.R., Deheri, G. (2013) Slip Velocity and Roughness Effect on Magnetic Fluid Based Infinitely Long Bearings. u: Lecture Notes in Mechanical Engineering, Springer India, str. 97-109
Patel, K.C. (1980) The hydromagnetic squeeze film between porous circular disks with velocity slip. Wear, 58(2): 275-281
Patel, N.D., Deheri, G. (2011) Effect of surface roughness on the performance of a magnetic fluid based parallel plate porous slider bearing with slip velocity. Journal of Serbian Society for Computational Mechanics, vol. 5, br. 1, str. 104-118
Patel, N.S., Vakharia, D.P., Deheri, G.M. (2012) A Study on the Performance of a Magnetic-Fluid-Based Hydrodynamic Short Journal Bearing. ISRN Mechanical Engineering, 2012: 1-7
Prakash, J., Tiwari, K. (1983) Roughness effects in porous circular squeeze-plates with arbitrary wall thickness. Journal of Lubrication Technology, 105(1): 90
Prakash, J., Vij, S.K. (1973) Hydrodynamic lubrication of porous slider. Journal of Mechanical Engineering and Science, Vol.15, p.p. 232-234
Rao, R. R., Gouthami, K., Kumar, J. V. (2013) Effect of velocity-slip and viscosity variation in squeeze film lubrication of two circular plates. Tribology in industry
Salant, R.F., Fortier, A.E. (2004) Numerical Analysis of a Slider Bearing with a Heterogeneous Slip/No-Slip Surface. Tribology Transactions, 47(3): 328-334
Shah, R.C., Bhat, M.V. (2000) Squeeze film based on magnetic fluid in curved porous rotating circular plates. J Magn. Magn. Mater., 208, 115-119
Shah, R.C., Bhat, M.V. (2003) Magnetic fluid based porous inclined slider bearing with velocity slip. International Journal of Applied Mechanics and Engineering, 18(2); 331-336
Sinha, P., Adamu, G. (2008) THD analysis for slider bearing with roughness: special reference to load generation in parallel sliders. Acta Mechanica, 207(1-2): 11-27
Ting, L.L. (1972) A Mathematical Analog for Determination of Porous Annular Disk Squeeze Film Behavior Including the Fluid Inertia Effect. Journal of Basic Engineering, 94(2): 417
Tipei, N. (1982) Theory of lubrication with ferrofluids: application to short bearings. Transactions of ASME, 510-515; 104
Troian, S.M., Thompson, P.A. (1997) A general boundary condition for liquid flow at solid surfaces. Nature, 389(6649): 360-362
Turaga, R., Sekhar, S., B. Majumdar, C. (1997) Stochastic FEM Analysis of Finite Hydrodynamic Bearings with Rough Surfaces. Tribology Transactions, 40(4): 605-612
Wang, L., Lu, C., Wang, M., Fu, W. (2012) The numerical analysis of the radial sleeve bearing with combined surface slip. Tribology International, 47: 100-104
Wu, C.W., Ma, G.J., Zhou, P., Wu, C.D. (2006) Low Friction and High Load Support Capacity of Slider Bearing With a Mixed Slip Surface. Journal of Tribology, 128(4): 904
Zhu, Y., Granick, S. (2001) Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces. Physical Review Letters, 87(9)