Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:31
  • preuzimanja u poslednjih 30 dana:8

Sadržaj

članak: 7 od 20  
Back povratak na rezultate
2020, vol. 17, br. 1, str. 41-63
Data-driven framework for energy-efficient smart cities
(naslov ne postoji na srpskom)
Univerzitet u Nišu, Elektronski fakultet

e-adresanenad.petrovic@elfak.ni.ac.rs, seriousdjoka@gmail.com
Projekat:
Razvoj novih informaciono-komunikacionih tehnologija, korišćenjem naprednih matematičkih metoda, sa primenama u medicini, telekomunikacijama, energetici, zaštititi nacionalne baštine i obrazovanju (MPNTR - 44006)
Infrastruktura za elektronski podržano učenje u Srbiji (MPNTR - 47003)

Sažetak
(ne postoji na srpskom)
Energy management is one of the greatest challenges in smart cities. Moreover, the presence of autonomous vehicles makes this task even more complex. In this paper, we propose a data-driven smart grid framework which aims to make smart cities energy-efficient focusing on two aspects: energy trading and autonomous vehicle charging. The framework leverages deep learning, linear optimization, semantic technology, domain-specific modelling notation, simulation and elements of relay protection. The evaluation of deep learning module together with code generation time and energy distribution cost reduction performed within the simulation environment also presented in this paper are given. According to the results, the achieved energy distribution cost reduction varies and depends from case to case.
Reference
*** A next-generation smart contract and decentralized application platform. Available at: https://github.com/ethereum/wiki/wiki/White-Paper
*** OpenWeather. Available at: https://openweathermap.org
*** (2006) Semantic web technologies: Trends and research in ontologybased systems. Chichester, England: John Wiley & Sons
*** Hourly energy consumption: Over 10 years of hourly energy consumption data from PJM in megawatts. Available at: https://www.kaggle.com/robikscube/hourly-energy-consumption
Ahat, M., Amor, S.B., Bui, M., Bui, A., Guérard, G., Petermann, C. (2013) Smart grid and optimization. American Journal of Operations Research, 03(01): 196-206
Ahrendt, W., Bubel, R., Ellul, J., Pace, G., Jimenez, R.P., Rebiscoul, V., Schneider, G. (2019) Verification of smart contract business logic: Exploiting a java source code verifier. u: Proceedings of the 8 th International Conference on Fundamentals of Software Engineering - FSEN 2019, Tehran, Iran, May, pp. 228 - 243, Vol. 11761
Bagdadee, A.H., Zhang, L. (2019) Smart grid: A brief assessment of the smart grid technologies for modern power system. Journal of Engineering Technology, 8(1): 122-142
Balani, N., Hathi, R. (2017) Enterprise blockchain: A definitive handbook. 1 st edition; Independently published
Bayram, I., Shakir, M.Z., Abdallah, M., Qaraqe, K. (2014) A survey on energy trading in smart grid. u: Proceedings of the IEEE Global Conference on Signal and Information Processing - GlobalSIP, Atlanta, USA, December, pp. 258 -262
Bengio, Y. (2009) Learning deep architectures for AI. Foundations and Trends® in Machine Learning, 2(1): 1-127
Dantzig, G.B., Thapa, M.N. (1997) Linear programming 1: Introduction. New York, NY: Springer
Dantzig, G.B., Orden, A., Wolfe, P. (1955) The generalized simplex method for minimizing a linear form under linear inequality restraints. Pacific Journal of Mathematics, 5(2): 183-195
Delamare, J., Bitachon, B., Peng, Z., Wang, Y., Haverkort, B.R., Jongerden, M.R. (2015) Development of a smart grid simulation environment. Electronic Notes in Theoretical Computer Science, 318(C): 19-29
Delgado-Gomes, V., Martins, J.F., Lima, C., Borza, P.N. (2015) Smart grid security issues. u: Proceedings of the 9 th International Conference on Compatibility and Power Electronics - CPE, Costa da Caparica, Portugal, June, pp. 534 -538
Deng, R., Yang, Z., Chow, M., Chen, J. (2015) A survey on demand response in smart grids: Mathematical models and approaches. IEEE Transactions on Industrial Informatics, 11(3): 570-582
Dong, X., Zaoyu, W., Hua, M., Jing, X., Debo, Y., Fanjin, W., Wei, B. (2020) ETSB: Energy trading system based on blockchain. u: Proceedings of the International Conference on Security with Intelligent Computing and Big-data Services, Vol. 895, pp. 673 -684
Fourer, R., Gay, D.M., Kernighan, B.W. (2003) AMPL: A mathematical programing language. USA: Duxbury Press, 2nd edition
Garcia, J.J., Cardenas, J.J., Enrich, R., Ilić, D., Karnouskos, S., Sauter, R. (2014) Smart city energy management via monitoring of key performance indicators. u: Proceedings of the CIRED Workshop 2014, Rome, Italy, Paper 0263, June, pp. 1 -5
Gharavi, H., Ghafurian, R. (2011) Smart grid: The electric energy system of the future. Proceedings of the IEEE, 99(6): 917-921
Gruber, T.R. (1995) Toward principles for the design of ontologies used for knowledge sharing?. International Journal Human-Computer Studies, 43(5-6): 907-928
Hamalainen, M. (2019) A framework for a smart city design: Digital transformation in the Helsinki smart city, entrepreneurship and the community: A multidisciplinary perspective on creativity, social challenges, and business. pp. 63 -86
Kabalci, E., Kabalci, Y. (2018) Smart grids and their communication systems. Singapore, Singapore: Springer
Kauhaniemi, K., Voima, S. (2012) Adaptive relay protection concept for smart grids. u: Proceedings of the Renewable Efficient Energy II Conference, Vaasa, Finland, March, pp. 1 -10
Kocić, Đ., Petrović, N. (2019) Application of android based devices in analog electric signal measurement. u: Proceedings of the 25 th Conference YuInfo 2019, Kopaonik, Serbia, pp. 1 -5
Kotb, M.F., El-Saadawi, M., El-Desouky, E.H. (2019) Overcurrent protection relay-based Arduino Uno for FREEDM system. International Transactions on Electrical Energy Systems, 29(6): 1-13
Lasisi, A., Ali, F., Attoh-Okine, N. (2019) A case study of multi-dimensional emission data in the light of electric vehicles in smart cities: Energy and policy implications. Journal of Sustainable Cities and Society, pp. 1 -33
Lim, C., Lim, S., Aliyu, I. (2018) Blockchain for small scale energy trading. u: Proceedings of the Fall Conference of Electronics and Telecommunications Society in 2018, Seoul, South Korea, pp. 59 -61
Lippmann, R. (1987) An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2): 4-22
Musleh, A.S., Yao, G., Muyeen, S.M. (2019) Blockchain applications in smart grid: Review and frameworks. IEEE Access, 7: 86746-86757
Narayanan, A., Clark, J. (2017) Bitcoin's academic pedigree. Communications of the ACM, 60(12): 36-45
Nehai, Z., Guérard, G. (2017) Integration of the blockchain in a smart grid model. u: Proceedings of the 14 th International Conference of Young Scientists on Energy Issues -CYSENI 2017, Kaunas, Lithuania, May, pp. 127 -134
Nehai, Z., Piriou, P., Daumas, F. (2018) Model-checking of smart contracts. u: Proceedings of the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE, pp. 980 -987
Oh, S., Kim, M., Park, Y., Roh, G., Lee, C. (2017) Implementation of blockchain-based energy trading system. Asia Pacific Journal of Innovation and Entrepreneurship, 11(3): 322-334
Petrović, N., Kocić, Đ. (2019) Data-driven architecture for adaptable smart grid based on IoT devices. u: Proceedings of the 63 rd National Conference on Electrical, Electronic and Computing Engineering -ETRAN 2019, Silver Lake, Serbia, June, pp. 880 -885; (in Serbian)
Petrović, N. (2019) Sartapproach to dynamic adaptivity simulation in fog computing scenarios. u: Proceedings of the 14 th International Conference on Advanced Technologies, Systems and Services in Telecommunications -TELSIKS 2019, Niš, Serbia, October, pp. 58 - 61
Petrović, N. (2019) Churn prediction in telco industry leveraging call center data. u: Proceedings of the 6 th International Conference on Electrical, Electronic and Computing Engineering - IcETRAN 2019, Silver Lake, Serbia, June, pp. 845 -850
Petrović, N. (2019) Adopting semantic-driven blockchain technology to support newcomers in music industry. u: Proceedings of the 16 th International Conference on Informatics and Information Technologies -CIIT 2019, Mavrovo, North Macedonia, pp. 1 -6
Schvarcbacher, M., Hrabovská, K., Rossi, B., Pitner, T. (2018) Smart grid testing management platform (SGTMP). Applied Sciences, 8(11): 1 -23
Shawkat, A.A.B.M., Azad, S. (2013) Demand forecasting in smart grid. Green Energy and Technology, 132: 135-150
Stone, M., Knapper, J., Evans, G., Aravopoulou, E. (2018) Information management in the smart city. Bottom Line, 31(3/4): 234-249
Uday, M., Prasad, P., Sai, N. (2019) Energy trading through blockchain. International Journal of Scientific Research in Computer Science, Engineering and Information Technology, 5(2): 800-803
Ushmani, A. (2019) Blockchain insight. International Journal of Computer Science Trends and Technology, Vol. 7, No. 2, pp. 1 -3
Zhang, B., Hao, Z., Bo, Z. (2016) New development in relay protection for smart grid. Protection and Control of Modern Power Systems, 1(14): 1-7
Zheng, G., Zhao, B., Zhao, X., Li, H., Huo, X., Li, W., Xia, Y. (2018) Smart city energy interconnection technology framework preliminary research. u: Proceedings of the IOP Conference Series: Earth and Environmental Science, Vol. 108, Paper 052043, pp. 1 -7
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE2001041P
objavljen u SCIndeksu: 06.04.2020.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka