Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 5 od 34  
Back povratak na rezultate
2021, vol. 49, br. 4, str. 997-1004
Teorijsko i eksperimentalno istraživanje zone rezanja nastale primenom AWJ procesa
Petroleum-Gas University of Ploiesti, Faculty of Mechanical and Electrical Engineering, Romania

e-adresaipatirnac@gmail.com
Ključne reči: waterjet; kerf width; standoff; velocity; hardness; CFD
Sažetak
Primenjen je AWJ proces u cilju teorijskog i eksperimentalnog istraživanja uticaja vodenog mlaza na metalni materijal koji se koristi za izradu opreme za naftna polja. Istraženo je koliko rasipanje mlaza ima uticaja na širinu reza i susednu regiju. Korišćeni materijal je metal R275NL2, kvalitetna legura čelika niske temperature, koji se koristi u petrohemijskoj industriji. Eksperiment sa vodenim mlazom je izveden na mašini za rezanje YCWJ-380-1520 u prethodno definisanim radnim uslovima. U teorijskom istraživanju je na geometrijskom modelu korišćena CFD simulacija sa planarnim 2D protokom fluida. Ispitivana je grafička korelacija između ishoda simulacije i eksperimentalnih rezultata, preklapanje teorijskog istraživanja brzine rezanja i granica brzine otvrdnjavanja neposredno uz rez.
Reference
*** (20092009) EN 10028-3: Flat products made of steels for pressure purposes: Weldable fine grain steels, normalized
*** (2018) SR EN ISO 6507-1:2018: Metallic materials: Vickers hardness test: Test method. Part 1
*** (2020) EN ISO 643: Steels: Micrographic determination of the apparent grain size
*** (2010) ASTM E112-10 standard test methods for determining average grain size
*** Simulating a jet impingement in ANSYS Fluent using Eulerian Multiphase model. available at: https://www.youtube.com/watch?v=VdEOglbypDY &t=523s, accessed: 15.07.2019
Akkurt, A. (2015) The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy. Engineering Science and Technology, an International Journal, 18(3): 303-308
Akkurt, A. (2010) Cut front geometry characterization in cutting applications of brass with abrasive water jet. Journal of Materials Engineering and Performance, 19(4): 599-606
Alberdi, A., Artaza, T., Suárez, A., Rivero, A., Girot, F. (2016) An experimental study on abrasive waterjet cutting of CFRP/Ti6Al4V stacks for drilling operations. International Journal of Advanced Manufacturing Technology, 86(1-4): 691-704
Cosansu, G., Cogun, C. (2012) An investigation on use of colemanite powder as abrasive in abrasive waterjet cutting (AWJC). Journal of Mechanical Science and Technology, 26(8): 2371-2380
Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Karthikeyan, S. (2018) Experimental investigations on multiple responses in abrasive waterjet machining of Ti-6Al-4V alloy. Materials Today: Proceedings, 5(5): 13413-13421; ICMMM -2017
Gudimetla, P., Wang, J., Wong, W. (2002) Kerf formation analysis in the abrasive waterjet cutting of industrial ceramics. Journal of Materials Processing Technology, 128: 123-129
Heffer, G., Šimunović, K., Samardžić, I., Vidaković, I. (2020) Effect of speed and impact angle on solid particle erosion of vanadium carbide coatings produced by thermo-reactive diffusion technique. FME Transactions, vol. 48, br. 3, str. 497-503
Kamarudin, N.H., Prasada, R.A.K., Azhari, A. (2016) CFD based erosion modelling of abrasive waterjet nozzle using discrete phase method. u: IOP Conf. Series: Materials Science and Engineering, 12-14.11., Kuala Lumpur, Malaysia, vol.114
Kishore, S.J., Teja, P. C., Eshwariaha, B., Reddy, K. H. (2019) Experimental control of kerf width taper during abrasive water jet machining. FME Transactions, vol. 47, br. 3, str. 585-590
Li, M., Huang, M., Chen, Y., Gong, P., Yang, X. (2019) Effects of processing parameters on kerf characteristics and surface integrity following abrasive waterjet slotting of Ti6Al4V/CFRP stacks. Journal of Manufacturing Processes, 42: 82-95
Long, X., Ruan, X., Liu, Q., Chen, Z., Xue, S., Wu, Z. (2017) Numerical investigation on the internal flow and the particle movement in the abrasive waterjet nozzle. Powder Technology, 314: 635-640
Ma, C., Deam, R.T. (2006) A correlation for predicting the kerf profile from abrasive water jet cutting. Experimental Thermal and Fluid Science, 30(4): 337-343
Marichamy, S., Ravichandran, M., Stalin, B., Babu, S.B. (2019) Optimization of abrasive water jet machining parameters for α-β brass using Taguchi methodology. FME Transactions, vol. 47, br. 1, str. 116-121
Mishra, D.R., Dutt, G.G., Prakash, D., Bajaj, A., Sharma, A., Bisht, R., Gupta, S. (2020) Optimization of Kerf deviations in pulsed Nd:YAG laser cutting of Hybrid composite laminate using GRA. FME Transactions, vol. 48, br. 1, str. 109-116
Pahuja, R., Ramulu, M. (2019) Abrasive water jet machining of Titanium (Ti6Al4V)-CFRP stacks: A semi-analytical modeling approach in the prediction of kerf geometry. Journal of Manufacturing Processes, 39: 327-337
Patirnac, I. (2020) Researchers on Waterjet manufacturing of the metallic materials used in petroleum and petrochemical industry. Ploiesti: Petroleum-Gas University of Ploiesti, PhD Thesis, Mechanical PhD Domain ; (in Romanian)
Shanmugam, D.K., Wang, J., Liu, H. (2008) Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. International Journal of Machine Tools and Manufacture, 48(14): 1527-1534
Živković, S., Milinović, M., Adamec, N. (2014) Experimental and numerical research of a supersonic planar thrust vectoring nozzle via mechanical tabs. FME Transactions, vol. 42, br. 3, str. 205-211
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2104997P
primljen: 15.06.2021.
prihvaćen: 15.09.2021.
objavljen u SCIndeksu: 26.11.2021.
Creative Commons License 4.0