Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 6 od 34  
Back povratak na rezultate
2020, vol. 48, br. 4, str. 770-778
Eksperimentalno i numeričko istraživanje uticaja rada sistema upravljanja vektorom potiska na aerodinamičke karakteristike raketa simulacijom hladnim i toplim mlazom
aVojnotehnički institut - VTI, Beograd
bUniverzitet u Beogradu, Mašinski fakultet

e-adresaocokoljic.goran@gmail.com
Ključne reči: wind tunnel; experimental aerodynamics; missile model; TVC; jet tab; hot-gas jet; cold-air jet; lateral jets; CFD
Sažetak
Strujni fenomeni koji se javljaju kao posledica dejstva rada sistema UVP veoma su složeni, a efekti dejstva evidentni su na svim komponentama rakete. Ciljevi ove studije su da se u potpunosti analiziraju efekti dejstva hladnog reaktivnog mlaza sistema UVP na osnovu rezultata iz aerotunelskih testova i CFD simulacije i da se definišu najadekvatnije parametri sličnosti, koje bi proizveli topli produkti sagorevanja. Numerička aerodinamička analiza i simulacija toplih produkata sagorevanja sprovedena je rešavanjem 3D Reynolds Averaged Navier-Stokes jednačina na osnovu metode konačnih zapremina. U studiji je definisana metodologija istraživanja efekata reaktivnog mlaza u aerotunelima i predložen je način određivanja interferencije rada sistema za upravljanje vektorom potiska na aerodinamičke karakteristike vođenih raketa, kao jednog od osnovnih preduslova za strukturnu, analizu stabilnosti i analizu performansi. Uzajamna verifikacija i validacija procesa izvršena je kroz eksperiment i odgovarajuću primenu komercijalnog numeričkog softverskog koda za proračun aerodinamičkih efekata mlaza na performanse vođene rakete. Prikazani su eksperimentalni rezultati koeficijenta momenta propinjanja, kao i rezultati dobijeni CFD analizom i dobijeno je veoma dobro slaganje.
Reference
*** (1998) Guide: Guide for the verification and validation of computational fluid dynamics simulations. AIAA G-077-1998(2002)
Ağsarlıoğlu, E., Akgül, A. (2012) Numerical prediction of lateral jets for missile like geometries. Scientific Technical Review, vol. 62, br. 2, str. 3-9
Beresh, S.J., Henfling, J.F., Erven, R.J. (2002) Surface measurements of a supersonic jet in subsonic compressible crossflow for the validation of computational models. u: Sandia report, SAND2002-1890, Unlimited Release, October
Champigny, P., Lacau, R.G. (1994) Lateral jet control for tactical missiles. Presented at an AGARD Special Course on 'Missile Aerodynamics', June 1994
Dechuan, S., Xiaohong, J., Xiaogeng, L. (2008) CFD research for air-to-air missile with lateral jet control. u: 26th International Congress of the Aeronautical Sciences, 2008
Hollstein, H.J. (1965) Jet tab thrust vector control. Journal of Spacecraft and Rockets, 2(6): 927-930, Nov.-Dec
Kyoung, T.K., Lee, E. (2015) Numerical investigation of jet interaction for missile with continuous type side jet thruster. Int'l J. of Aeronautical & Space Sci, 16(2), 148-156
Lacau, R.G., Roberts, M. (1988) The use of lateral jet control at Aerospatiale. u: Mendenhall M.R; Nixon E; Dillenius M.F.E. [ur.] Proceedings of NEAR Conference on Missile Aerodynamics, California: Nielsen Engineering and Research, Inc, pp. 11.1-11.15
Miau, J.J., Lin, C.H., Chung, K.M., Chou, J.H., Liu, J.F. (2002) Normal and side forces amplification by lateral jet issued from an ogive cylinder. Presented at IC MAR2002, International Conference on the Methods of Aerophysical Research XI, Novosibirsk-Biysk, Russia, July 1-7, 2002
Ocokolljić, G., Živković, S., Subotić, S. (2011) Aerodynamic coefficients determination for anti tank missile with lateral jets. u: 4th International Scientific Conference of Defensive Technologies, 5-7, 10.2011, Belgrade, Proceedings, pp. 17-22
Ocokoljic, G.J., Rasuo, B.P., Bengin, A.C. (2017) Aerodynamic Shape Optimization of Guided Missile Based on Wind Tunnel Testing and Computational Fluid Dynamics Simulation. Thermal Science, vol. 21, br. 3, str. 1543-1554
Ocokoljić, G., Živković, S., Vitić, A. (2009) Design of the ATM model with missile engine simulation. u: Proc. 3rd OTEH Conference, pp. 159-165
Ocokoljić, G., Samardžić, M., Vitić, A. (2012) Testing of the anti tank missile with lateral jets. u: 47th International Symposium of Applied Aerodynamics, 26-28.03.2012, Paris, Proceedings, pp. 1-7
Ocokoljić, G., Rašuo, B. (2012) Testing an anti tank missile model with jet simulation in the T-35 subsonic wind tunnel. Scientific Technical Review, vol. 62, br. 3-4, str. 14-20
Ocokoljić, G., Rašuo, B., Kozić, M. (2016) Supporting system interference on aerodynamic characteristics of an aircraft model in the wind tunnels. Aerospace Science and Technology Journal, Elsevier, -1, 64, 1, pp. 133-146, 0263-2241
Ocokoljić, G., Damljanović, D., Vuković, Đ., Rašuo, B. (2018) Contemporary frame of measurement and assessment of wind-tunnel flow quality in a low-speed facility. FME Transactions, vol. 46, br. 4, str. 429-442
Schilling, H., Friedrichs, R., Christ, D. (1990) Experimental aerodynamics for hot gas jet reaction control systems. u: AGARD Conference proceeding No. 493: Missile Aerodynamics, 1990
Spaid, F.W., i dr. (1973) Aerodynamic interference induced by reaction controls. Paris: AGARD
Srivastava, B. (1997) Computational analysis and validation for lateral jet controlled missiles. Journal of Spacecraft and Rockets, 34(5): 584-592, September-October
Tuncer, I.H., Platzer, M.F., Vandyken, R.D. (1998) Navier-Stokes analysis of subsonic flowfields over a missile configuration. Journal of Spacecraft and Rockets, 35(2): 127-131
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2004770O
primljen: 15.04.2020.
prihvaćen: 15.07.2020.
objavljen u SCIndeksu: 27.10.2020.
Creative Commons License 4.0