Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:14
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 5 od 65  
Back povratak na rezultate
2020, vol. 5, br. 2, str. 60-76
Predviđanje prodaje na platformi e-trgovine, korišćenjem data mining modela
aITS Information Technology School, Belgrade
bWestern Serbia Academy of Applied Studies
cZea Stim Research & Development, Belgrade

e-adresastefana@turing.mi.sanu.ac.rs, djordje.petrovic@akademijazs.edu.rs, miodrag@zeastim.com
Ključne reči: Klaster analiza; PCA; Market Basket analiza; Vector Distance model; segmentacija tržišta
Sažetak
U ovom radu primenjen je algoritam za prodaju twinning proizvoda sa e-commerce Web platforme. Kako bi se utvrdili relativno homogene grupe proizvoda u trgovinskom lancu na internetu tokom prethodne godine potrebno je bilo formirati prediktivni matematički model. Nakon izdvajanja objekata i odre enih atributa iz MySQL baze podataka, odre ivanja skupa relevantnih varijabli koje će reprezentovati obeležja grupe, primenjeni su K-means algoritam u Python programskom okruženju, Market Basket model i Vector Distance model. Na osnovu analize izvornih i veštačkih promenljivih, predložen je broj klastera, koji je tokom izvršavanja algoritma fiksan, a u cilju detekcije razdvojenosti i kompaktnosti klastera, korišćen je Silhouette indeks. Na osnovu podele po klasterima, ura eni su modeli koji predvi aju slične proizvode i analizirala se verovatnoća kupovine. Dobijeni rezultati mogu se koristiti u smislu planiranja prodajnih kampanja, optimizacije troškova marketinga, predlaganja novih programa lojalnosti, kao i boljeg razumevanja ponašanja potrošača sa ciljem zadržavanja postojećih i povećanja broja novih kupaca. Rezultati su izdvojeni u dve grupe - predloge koje treba ponuditi kupcima i predloge koje treba ponuditi prodavcima.
Reference
Agresti, A. (2002) Categorical Data Analysis. New York: John Wiley & Sons, 2nd ed
Anderson, T. (2003) An Introduction to Multivariate Statistical Analysis. New York: Wiley, 3rd ed
Bejju, A. (2016) Sales Analysis of E-Commerce Websites using Data Mining Techniques. International Journal of Computer Applications, 133(5): 36-40
Bishop, C. (2006) Pattern Recognition and Machine Learning. New York: Springer
Celebi, E.M., Kingravi, H.A., Vela, P.A. (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1): 200-210
Cheng, C., Chen, Y. (2009) Classifying the segmentation of customer value via RFM model and RS theory. Expert Systems with Applications, 36(3): 4176-4184
Hastie, T., Tibshirani, R., Friedman, J. (2013) The elements of statistical learning: Data mining, inference and prediction. u: Springer Series in Statistics, Springer, 2nd ed
Ismail, M., Ibrahim, M.M., Sanusi, Z.M., Nat, M. (2015) Data Mining in Electronic Commerce: Benefits and Challenges. International Journal of Communications, Network and System Sciences, 08(12): 501-509
Jain, A.K. (2010) Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8): 651-666
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y. (2002) An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7): 881-892
Kubiak, B., Weichbroth, P. (2010) Cross- and Up-selling Techniques in E-Commerce Activities. Journal of Internet Banking and Commerce, 15-15
MathWorks, Inc Silhouette plot: MATLAB silhouette. [Online] Available: https://www.mathworks.com/help/stats/silhouette.html
Mcdaniel, C., Gates, R. (2014) Marketing Research. John Wiley & Sons, 10th ed
Nayak, J., Kanungo, D.P., Naik, B., Behera, H.S. (2016) Evolutionary Improved Swarm-Based Hybrid K-Means Algorithm for Cluster Analysis. u: Int. Conf. on Computer and Communication Technologies, Springer, New Delhi, Proceedings of, 343-352
Rachid, A. (2015) Customer Segmentation Model in E-commerce Using Clustering Techniques and LRFM Model: The Case of Online Stores in Morocco. International Journal of Computer, Electrical, Automation, Control and Information Engineering, 9, pp. 1795-1805
Sagin, A.N., Ayvaz, B. (2018) Determination of Association Rules with Market Basket Analysis: Application in the Retail Sector. Southeast Europe Journal of Soft Computing
Stefanović, H., Veselinović, R., Bjelobaba, G., Savić, A. (2018) An Adaptive Car Number Plate Image Segmentation Using K-Means Clustering. u: Int. Scientific Conference on Information Technology and Data Related Research-SINTEZA 2018, Proceedings of, 74-78
Tibshirani, R., Walther, G., Hastie, T. (2001) Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2): 411-423
Wang, Z., Xu, Z., Liu, S., Yao, Z. (2014) Direct clustering analysis based on intuitionistic fuzzy implication. Applied Soft Computing, 23: 1-8
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/SJEM2002060J
prihvaćen: 08.07.2020.
objavljen u SCIndeksu: 23.10.2020.

Povezani članci

Nema povezanih članaka