Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:2
  • full-text downloads in 30 days:2

Contents

article: 4 from 15  
Back back to result list
2017, vol. 32, iss. 3-4, pp. 189-195
Daucus carrota L.: Seed germination and natural infection by Fusarium spp. affected by Pseudomonas spp.
aInstitute of Soil Sciences, Belgrade, Serbia
bInstitute for Vegetable Crops, Smederevska Palanka, Serbia
cInstitute for Medicinal Plant Research 'Dr. Josif Pančić ', Belgrade, Serbia

emaildragana.josic@yahoo.com
Project:
New indigenous bacterial isolates Lysobacter and Pseudomonas as an important source of metabolites useful for biotechnology, plant growth stimulation and disease control: from isolates to inoculants (MESTD - 46007)

Abstract
The inhibitory effect of indigenous Pseudomonas strains on Fusarium spp. isolated from seeds of a new variety of carrot - 'Vizija' and their effects on seed germination were observed. Pseudomonas spp. strains were applied as bacterial suspensions (culture, 106 CFU mL-1) and cell-free supernatant (CFSa -106 and CFSb -108 CFU mL-1) fractions by sowing seeds during 7 (I) and 14 (II) days of incubation. The germination of control 'Vizija' seeds was 19% after the first and 40% after the second incubation period. Pseudomonas chlororaphis Q16 strain exhibited statistically significant increases in seed germination with all applied fractions and incubation periods, showing values of 43-62% and 55.5-91%, i.e. increments of 24-43% and 15.5-51% compared to the control, after 7 and 14 days of incubation, respectively. P. chlororaphis K35 showed lower but significantly different seed germination values (38-67%) for all variants, except for 7 days old culture. Pseudomonas sp. Ek1 had weaker seed germination potential, showing statistically significant increment only for CFSa,b (I) and CFSb (II) fractions. All tested Pseudomonas strains inhibited the growth of three Fusarium species isolated from 'Vizija' seeds: F. solani, F. oxysporum and F. subglutinans. Natural infection was observed in 20% (I) and 54% (II) of 'Vizija' seeds. P. chlororaphis K35 was the most efficient antifungal strain, reducing seed infection 97.5-100%, followed by Q16 with 95-100%, showing no statistically significant mutual difference. Pseudomonas sp. Ek1 showed a weaker antifungal activity and reduced seed infection by 85-96.75%. The application of P. chlororaphis Q16 and K35 as strains effective in improvement of carrot seed germination and growth inhibition of the seed pathogens F. solani, F. oxysporum and F. subglutinans, can be further tested in carrot production for more beneficial effects.
References
Bloemberg, G.V., Lugtenberg, B.J.J. (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol, 4, str. 343-350
Chin-A-Woeng, T.F. C., Bloemberg, G.V., Mulders, I.H. M., Dekkers, L.C., Lugtenberg, B.J. J. (2000) Root Colonization by Phenazine-1-Carboxamide-Producing Bacterium Pseudomonas chlororaphis PCL1391 Is Essential for Biocontrol of Tomato Foot and Root Rot. Molecular Plant-Microbe Interactions, 13(12): 1340-1345
Chin-A-Woeng, T.F. C., van den Broek, D., Lugtenberg, B.J. J., Bloemberg, G.V. (2005) The Pseudomonas chlororaphis PCL1391 Sigma Regulator psrA Represses the Production of the Antifungal Metabolite Phenazine-1-Carboxamide. Molecular Plant-Microbe Interactions, 18(3): 244-253
Egamberdieva, D., Jabborova, D., Hashem, A. (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi journal of biological sciences, 22(6): 773-9
El-Sayed, W., El-Megeed, A.M., El-Razik, A.A.B., Soliman, K.H., Ibrahim, S.A. (2008) Isolation and identification of phenazine-1-carboxylic acid from different Pseudomonas isolates and its biological activity against Alternaria solani. Research Journal of Agriculture and Biological Sciences, 4(6): 892-901
Ghosh, S.K., Ray, S.K., Hasan, M.A. (2014) In vitro study of antagonistic potential of some fungi and bacteria against fusarium moniliforme var. Subglutinans, causal organism of mango panicle malformation. Acta Horticulturae, (1024): 287-294
Hanif, R., Iqbal, Z., Iqbal, M., Hanif, S., Rasheed, M. (2006) Use of vegetables as nutritional food: Role in human health. Journal of Agricultural and Biological Science, 1(1): 18-22
Jošić, D., Pavlović, S., Starović, M., Stojanović, S., Stanojković-Sebić, A., Pivić, R. (2012) Biocontrol of Alternaria tenuissima originated from Ocimum basilicum L using indigenous Pseudomonas spp. strains. in: 7th CMAPSEEC Proceedings, Subotica, Serbia, Belgrade, Serbia: Institute for Medicinal Plant Research Dr Josif Pančić, 195-200
Jošić, D., Protolipac, K., Starović, M., Stojanović, S., Pavlović, S., Miladinović, M., Radović, S. (2012) Phenazines producing pseudomonas isolates decrease Alternaria tenuissima growth, pathogenicity and disease incidence on cardoon. Archives of Biological Sciences, vol. 64, br. 4, str. 1495-1503
Lopez-Reyes, J.G., Gilardi, G., Garibaldi, A., Gullino, M.L. (2015) In vivo Evaluation of Essential Oils and Biocontrol Agents Combined with Hot Water Treatments on Carrot Seeds Against Alternaria radicina. Journal of Phytopathology, 164(2): 131-135
Mezaache-Aichour, S., Haichour, N., Nicklin, J., Zerroug, M. (2016) Antimicrobial Activity of Potato Rhizospheric Pseudomonas chlororaphis subsp. aureofaciens from Sétif Algeria. Annual Research & Review in Biology, 11(5): 1-7
Moretti, A.N. (2009) Taksonomija roda Fusarium - stalna borba među taksonomistima. Zbornik Matice srpske za prirodne nauke, br. 117, str. 7-13
Nirenberg, H. (1976) Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitteilungenaus der Biologischen Bundesanstalt fur Land und Forstwirtschaft, 169(1), 117
Postma, J., Clematis, F., Nijhuis, E.H., Someus, E. (2013) Efficacy of four phosphate-mobilizing bacteria applied with an animal bone charcoal formulation in controlling Pythium aphanidermatum and Fusarium oxysporum f.sp. radicis lycopersici in tomato. Biological Control, 67(2): 284-291
Sharma, K.D., Karki, S., Thakur, N.S., Attri, S. (2012) Chemical composition, functional properties and processing of carrot-a review. Journal of Food Science and Technology, 49(1): 22-32
Stanković, I., Milojević, K., Vučurović, A., Nikolić, D., Krstić, B., Bulajić, A. (2015) First Report of Fusarium Root Rot of Stored Carrot Caused by Fusarium avenaceum in Serbia. Plant Disease, 99(2): 286-286
Tziros, G., Lagopodi, A., Tzavella-Klonari, K. (2007) Reduction of Fusarium wilt in watermelon by Pseudomonas chlororaphis PCL1391 and P. fluorescens WCS365. Phytopathologia Mediterranea, 320-323; 46
Zadernowski, R., Piłat, B., Czaplicki, S., Ogrodowska, D. (2010) Charakterystyka marchwi czarnej (Daucus Carota ssp. Sativus var. Atrorubens alef). Polish Journal of Natural Science, 25(4): 438-443
Zhang, X. Y., Hu, J., Zhou, H. Y., Hao, J. J., Xue, Y. F., Chen, H., Wang, B. G. (2014) First Report of Fusarium oxysporum and F. solani Causing Fusarium Dry Rot of Carrot in China. Plant Disease, 98(9): 1273-1273
 

About

article language: English
document type: Original Scientific Paper
DOI: 10.2298/PIF1704189J
published in SCIndeks: 22/01/2018
peer review method: double-blind
Creative Commons License 4.0

Related records

No related records