Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:9
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 5  
Back povratak na rezultate
2021, vol. 18, br. 3, str. 397-426
Application of deep learning algorithms and architectures in the new generation of mobile networks
(naslov ne postoji na srpskom)
aVlatacom Institute, Belgrade + Singidunum University, Belgrade + Universidade Lusófona de Humanidades e Tecnologias, COPELABS, Lisbon, Portugal
bVlatacom Institute, Belgrade
cVlatacom Institute, Belgrade + College of Applied Technical Sciences, Kruševac
dVlatacom Institute, Belgrade + Univerzitet Singidunum, Beograd
eUniversidade de Lisboa, Instituto Superior Técnico, Instituto de Telecomunicações, Lisbon, Portugal

e-adresadejan.dasic@vlatacom.com, miljan.vucetic@vlatacom.com, nilic@asss.edu.rs, milos.stankovic@singidunum.ac.rs, beko.marko@gmail.com
Projekat:
This work was supported by Vlatacom Institute and in part by the Science Fund of the Republic of Serbia under Grant 6524745, AI-DECIDE

Ključne reči: Deep learning; Mobile networks; Mobile data analysis; Network security; Drone-based communications; Signal processing; Modulation Classification
Sažetak
(ne postoji na srpskom)
Operators of modern mobile networks are faced with significant challenges in providing the requested level of service to an ever increasing number of user entities. Advanced machine learning techniques based on deep architectures and appropriate learning methods are recognized as promising ways of tackling the said challenges in many aspects of mobile networks, such as mobile data and mobility analysis, network control, network security and signal processing. Having firstly presented the background of deep learning and related technologies, the paper goes on to present the architectures used for deployment of deep learning in mobile networks. The paper continues with an overview of applications and services related to the new generation of mobile networks that employ deep learning methods. Finally, the paper presents practical use case of modulation classification as implementation of deep learning in an application essential for modern spectrum management. We complete this work by pinpointing future directions for research.
Reference
Abdah, H., Barraca, J.P., Aguiar, R.L. (2020) Handover Prediction Integrated with Service Migration in 5G Systems. u: Proceedings of the IEEE International Conference on Communications, Dublin, Ireland, June 2020, Dublin, Ireland, 1-7
Aceto, G., Ciuonzo, D., Montieri, A., Pescape, A. (2019) Mobile Encrypted Traffic Classification Using Deep Learning: Experimental Evaluation, Lessons Learned, and Challenges. IEEE Transactions on Network and Service Management, 16(2): 445-458
Alauthaman, M., Aslam, N., Zhang, L., Alasem, R., Hossain, M.A. (2018) A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks. Neural Computing and Applications, 29(11): 991-1004
Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., Bertin, P. (2018) Improving Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach. IEEE Network, 32(6): 42-49
Ali, O.S., Shamsabadi, A.S., Sajadmanesh, S., Taheri, A., Katevas, K., Rabiee, H.R., Lane, N.D., Haddadi, H. (2020) A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics. IEEE Internet of Things Journal, 7(5): 4505-4518
Ali, S., et al. (2020) 6G White Paper on Machine Learning in Wireless Communication Networks. pp. 1-29, ArXiv, https://arxiv.org/abs/2004.13875
Almaslukh, B., Al-Muhtadi, J., Artoli, A. (2017) An Effective Deep Autoencoder Approach for Online Smartphone-Based Human Activity Recognition. International Journal of Computer Science and Network Security, 17(4): 160-165
Alsheikh, M.A., Niyato, D., Lin, S., Tan, H., Han, Z. (2016) Mobile big data analytics using deep learning and apache spark. IEEE Network, 30(3): 22-29
Aminanto, M.E., Kim, K. (2017) Detecting Impersonation Attack in WiFi Networks Using Deep Learning Approach. u: Proceedings of the 17th International Workshop on Information Security Applications (WISA 2016), Jeju Island, Korea, August 2017, Jeju Island, Korea, 136-147
Arjovsky, M., Chintala, S., Bottou, L. (2017) Wasserstein Generative Adversarial Networks. u: Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, August 2017, Sydney, 214-223
Bariah, L., Mohjazi, L., Muhaidat, S., Sofotasios, P.C., Kurt, G.K., Yanikomeroglu, H., Dobre, O.A. (2020) A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks. IEEE Access, 8: 174792-174820
Bengio, Y. (2009) Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1): 1-127
Bhattacharya, S., Lane, N.D. (2016) From smart to deep: Robust activity recognition on smartwatches using deep learning. u: Proceedings of the IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), Sydney, Australia, March 2016, Sydney, 1-6
Chen, L., Yang, D., Zhang, D., Wang, C., Li, J., Nguyen, T. (2018) Deep mobile traffic forecast and complementary base station clustering for C-RAN optimization. Journal of Network and Computer Applications, 121: 59-69
Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., Bennis, M. (2019) Optimized Computation Offloading Performance in Virtual Edge Computing Systems Via Deep Reinforcement Learning. IEEE Internet of Things Journal, 6(3): 4005-4018
Cheng, X., Fang, L., Hong, X., Yang, L. (2017) Exploiting Mobile Big Data: Sources, Features, and Applications. IEEE Network, 31(1): 72-79
Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. (2014) Learning phrase representations using RNN encoder-decoder for statistical machine translation. u: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), Doha, Qatar, October 2014, Doha, Qatar, 1724-1734
Collobert, R., Bengio, S. (2004) Links between perceptrons, MLPs and SVMs. u: Proceedings of the 21st International Conference on Machine Learning (ICML '04), Banff, Alberta, CA, July 2004, Banff, Alberta, CA, 177-184
Damianou, A.C., Lawrence, N.D. (2013) Deep Gaussian Processes. u: Proceedings of the 16th International Conference on Artificial Intelligence and Statistics, Scottsdale, USA, April 2013, Scottsdale, USA, 207-215
D'angelo, G., Palmieri, F. (2021) Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial-temporal features extraction. Journal of Network and Computer Applications, 173: 1-16
Dašić, D., Ilić, N., Vučetić, M., Perić, M., Beko, M., Stanković, M.S. (2021) Distributed Spectrum Management in Cognitive Radio Networks by Consensus-Based Reinforcement Learning. Sensors, 21(9): 1-20
Dašić, D., Vučetić, M., Perić, M., Beko, M., Stanković, M. (2020) Cooperative Multi-Agent Reinforcement Learning for Spectrum Management in IoT Cognitive Networks. u: Proceedings of the 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 2020, Biarritz, France, 238-247
Dašić, D., Vučetić, M., Hew, A. K.G., Stanković, M. (2019) Deep Learning Applications in Mobile Networks. u: Proceedings of the International Scientific Conference on Information Technology and Data Related Research (Sinteza 2019), Novi Sad, Serbia, April 2019, Novi Sad: Singidunum University, 553-560
Doersch, C. (2021) Tutorial on Variational Autoencoders. 1-23, ArXiv, https://arxiv.org/abs/1606.05908
Domingos, P. (2012) A few useful things to know about machine learning. Communications of the ACM, 55(10): 78-87
El, B.B., Kanaris, L., Kokkinis, A., Kyriacou, M., Chrysoulas, C., Stavrou, S., Dagiuklas, T. (2020) Implementing Deep Learning Techniques in 5G IoT Networks for 3D Indoor Positioning: DELTA (DeEp Learning-Based Co-operaTive Architecture). Sensors, 20(19): 1-20
Felbo, B., Sundsøy, P., Pentland, A., Lehmann, S., de Montjoye, Y.-A. (2016) Using Deep Learning to Predict Demographics from Mobile Phone Metadata. u: Proceedings of the 4th International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, May 2016, San Juan, Puerto Rico, 1-16
Feng, J., Chen, X., Gao, R., Zeng, M., Li, Y. (2018) DeepTP: An End-to-End Neural Network for Mobile Cellular Traffic Prediction. IEEE Network, 32(6): 108-115
Feng, Q., Zhang, Y., Li, C., Dou, Z., Wang, J. (2017) Anomaly detection of spectrum in wireless communication via deep auto-encoders. Journal of Supercomputing, 73(7): 3161-3178
Fernández, M.L., Huertas, C.A., Gil, P.M., García, C.J., Martínez, P.G. (2019) Dynamic Management of a Deep Learning-Based Anomaly Detection System for 5G Networks. Journal of Ambient Intelligence and Humanized Computing, 10(8): 3083-3097
Georgiev, P., Bhattacharya, S., Lane, N.D., Mascolo, C. (2017) Low-resource Multi-task Audio Sensing for Mobile and Embedded Devices via Shared Deep Neural Network Representations. u: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, September 2017, 1(3): 1-19
Gers, F.A., Schmidhuber, J., Cummins, F. (1999) Learning to forget: Continual prediction with LSTM. u: Proceedings of the 9th International Conference on Artificial Neural Networks (ICANN '99), Edinburgh, UK, September 1999, Edinburgh, 850-855
Goodfellow, I., Bengio, Y., Courville, A. (2016) Deep Learning. Cambridge: The MIT Press
Goodfellow, I.J., Shlens, J., Szegedy, C. (2015) Explaining and Harnessing Adversarial Examples. u: Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, USA, May 2015, San Diego, CA, 1-11
Hinton, G.E., Osindero, S., Teh, Y. (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18(7): 1527-1554
Hu, P., Zhang, J. (2020) 5G-Enabled Fault Detection and Diagnostics: How Do We Achieve Efficiency?. IEEE Internet of Things Journal, 7(4): 3267-3281
Huang, C., Chiang, C., Li, Q. (2018) A study of deep learning networks on mobile traffic forecasting. u: Proceedings of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Canada, October 2018, Montreal, 1-6
Hussain, B., Du, Q., Zhang, S., Imran, A., Imran, M.A. (2019) Mobile Edge Computing-Based Data-Driven Deep Learning Framework for Anomaly Detection. IEEE Access, 7: 137656-137667
Ignatov, A., et al. (2019) AI Benchmark: All About Deep Learning on Smartphones in 2019. u: Proceedings of the International Conference on Computer Vision Workshop (ICCVW 2019), Seoul, Korea, October 2019, Seoul, Korea, 3617-3635
Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K., Hanzo, L. (2017) Machine Learning Paradigms for Next-Generation Wireless Networks. IEEE Wireless Communications, 24(2): 98-105
Jiang, R., Song, X., Fan, Z., Xia, T., Chen, Q., Miyazawa, S., Shibasaki, R. (2018) DeepUrbanMomentum: An Online Deep-Learning System for Short-Term Urban Mobility Prediction. u: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI 2018), New Orleans, USA, February 2018, New Orleans, 784-791
Kasgari, A.T.Z., Saad, W. (2019) Model-Free Ultra Reliable Low Latency Communication (URLLC): A Deep Reinforcement Learning Framework. u: Proceedingsa of the IEEE International Conference on Communications (ICC), Shanghai, China, May 2019, Shanghai, China, 1-6
Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017) ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84-90
Li, H., Gao, H., Lv, T., Lu, Y. (2018) Deep Q-Learning Based Dynamic Resource Allocation for Self-Powered Ultra-Dense Networks. u: Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, USA, May 2018, Kansas City, USA, 1-6
Li, J., Gao, H., Lv, T., Lu, Y. (2018) Deep reinforcement learning based computation offloading and resource allocation for MEC. u: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, April 2018, Barcelona, 1-6
Li, X., Dong, F., Zhang, S., Guo, W. (2019) A Survey on Deep Learning Techniques in Wireless Signal Recognition. Wireless Communications and Mobile Computing, Vol. 2019, ID 5629572, pp. 1-12
Liang, V.C., Ma, R.T.B., Siong, N.W., Wang, L., Winslett, M., Wu, H., Ying, S., Zhang, Z. (2016) Metro Density Prediction with Recurrent Neural Network on Streaming CDR Data. u: Proceedings of the IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, Finland, May 2016, Helsinki, 1374-1377
Liu, S., Du, J. (2016) MobiEar-Building an Environment-Independent Acoustic Sensing Platform for the Deaf Using Deep Learning. u: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services Companion (MobiSys'16), Singapore, Singapore, June 2016, Singapore, 50-50
Liu, X., Xu, Y., Jia, L., Wu, Q., Anpalagan, A. (2018) Anti-Jamming Communications Using Spectrum Waterfall: A Deep Reinforcement Learning Approach. IEEE Communications Letters, 22(5): 998-1001
Luong, N.C., Hoang, D.T., Gong, S., Niyato, D., Wang, P., Liang, Y., Kim, D.I. (2019) Applications of Deep Reinforcement Learning in Communications and Networking: A Survey. IEEE Communications Surveys & Tutorials, 21(4): 3133-3174
Maghrebi, H., Portigliatti, T., Prouff, E. (2016) Breaking Cryptographic Implementations Using Deep Learning Techniques. u: Proceedings of the 6th International Conference on Security, Privacy, and Applied Cryptography Engineering, Hyderabad, India, December 2016, Hyderabad, India, 3-26
Mcclellan, M., Cervelló-Pastor, C., Sallent, S. (2020) Deep Learning at the Mobile Edge: Opportunities for 5G Networks. Applied Sciences, 10(14): 1-27
Mclaughlin, N., et al. (2017) Deep Android Malware Detection. u: Proceedings of the 7th ACM on Conference on Data and Application Security and Privacy (CODASPY '17), Scottsdale, USA, March 2017, Scottsdale, USA, 301-308
Mehrabi, M., Mohammadkarimi, M., Ardakani, M., Jing, Y. (2019) Decision Directed Channel Estimation based on Deep Neural Network k-Step Predictor for MIMO Communications in 5G. IEEE Journal on Selected Areas in Communications, 37(11): 2443-2456
Mozaffari, M., Saad, W., Bennis, M., Nam, Y., Debbah, M. (2019) A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Communications Surveys & Tutorials, 21(3): 2334-2360
Naboulsi, D., Fiore, M., Ribot, S., Stanica, R. (2016) Large-Scale Mobile Traffic Analysis: A Survey. IEEE Communications Surveys & Tutorials, 18(1): 124-161
Nasir, Y.S., Guo, D. (2019) Multi-Agent Deep Reinforcement Learning for Dynamic Power Allocation in Wireless Networks. IEEE Journal on Selected Areas in Communications, 37(10): 2239-2250
Ning, R., Wang, C., Xin, C.S., Li, J., Wu, H. (2018) DeepMag: Sniffing Mobile Apps in Magnetic Field through Deep Convolutional Neural Networks. u: Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom), Athens, Greece, March 2018, Athens, Greece, 1-10
o'Shea T.J., Erpek, T., Clancy, T.C. (2017) Deep Learning Based MIMO Communications. 1-9, ArXiv, https://arxiv.org/abs/1707.07980
o'Shea T.J., West, N. (2016) Radio Machine Learning Dataset Generation with GNU Radio. u: Proceedings of the 6th GNU Radio Conference, Boulder, USA, September 2016, Boulder, USA, 1-6
o'Shea Timothy, J., Corgan, J., Clancy, T. C. (2016) Convolutional Radio Modulation Recognition Networks. u: Proceedings of the International Conference on Engineering Applications of Neural Networks (EANN 2016), Aberdeen, UK, September 2016, Aberdeen, UK, 213-226
Ozturk, M., Gogate, M., Onireti, O., Adeel, A., Hussain, A., Imran, M.A. (2019) A Novel Deep Learning Driven, Low-Cost Mobility Prediction Approach for 5G Cellular Networks: The Case of the Control/Data Separation Architecture (CDSA). Neurocomputing, 358: 479-489
Pierucci, L., Micheli, D. (2016) A Neural Network for Quality of Experience Estimation in Mobile Communications. IEEE MultiMedia, 23(4): 42-49
Polese, M., Jana, R., Kounev, V., Zhang, K., Deb, S., Zorzi, M. (2021) Machine Learning at the Edge: A Data-Driven Architecture with Applications to 5G Cellular Networks. IEEE Transactions on Mobile Computing, 20(12): 3367-3382
Rutagemwa, H., Ghasemi, A., Liu, S. (2018) Dynamic Spectrum Assignment for Land Mobile Radio with Deep Recurrent Neural Networks. u: Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, USA, May 2018, Kansas City, USA, 1-6
Samuel, N., Diskin, T., Wiesel, A. (2017) Deep MIMO detection. u: Proceedings of the IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Sapporo, Japan, July 2017, Sapporo, Japan, 1-5
Serbetci, B., Goseling, J. (2017) On Optimal Geographical Caching in Heterogeneous Cellular Networks. u: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, March 2017, San Francisco, CA, 1-6
Shafin, R., Liu, L., Chandrasekhar, V., Chen, H., Reed, J., Zhang, J.C. (2020) Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G. IEEE Wireless Communications, 27(2): 212-217
Shokry, A., Torki, M., Youssef, M. (2018) DeepLoc: A Ubiquitous Accurate and Low-Overhead Outdoor Cellular Localization System. u: Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '18), Seattle, USA, November 2018, Seattle, USA, 339-348
Song, X., Kanasugi, H., Shibasaki, R. (2016) DeepTransport: Prediction and Simulation of Human Mobility and Transportation Mode at a Citywide Level. u: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-16), New York, USA, July 2016, New York, 2618-2624
Su, X., Zhang, D., Li, W., Zhao, K. (2016) A Deep Learning Approach to Android Malware Feature Learning and Detection. u: Proceedings of the IEEE Trustcom/BigDataSE/ISPA, Tianjin, China, August 2016, Tianjin, China, 244-251
Sutskever, I., Vinyals, O., le Q.V. (2014) Sequence to Sequence Learning with Neural Networks. u: Proceedings of the 27th International Conference on Neural Information Processing Systems: Advances in Neural Information Processing Systems (NIPS 2014), Montreal, Ca, Vol. 2, December 2014, Montreal, 2: 3104-3112
Sutton, R.S., Barto, A.G. (2018) Reinforcement Learning: An Introduction. Cambridge: The MIT Press, 2nd Edition
Tang, F., Kawamoto, Y., Kato, N., Liu, J. (2020) Future Intelligent and Secure Vehicular Network Toward 6G: Machine-Learning Approaches. Proceedings of the IEEE, 108(2): 292-307
Thing, V.L.L. (2017) IEEE 802.11 Network Anomaly Detection and Attack Classification: A Deep Learning Approach. u: Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, March 2017, San Francisco, CA, 1-6
Tobias, L., Ducournau, A., Rousseau, F., Mercier, G., Fablet, R. (2016) Convolutional Neural Networks for object recognition on mobile devices: A case study. u: Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, December 2016, Cancun, Mexico, 3530-3535
Torres, P., Catania, C., Garcia, S., Garino, C.G. (2016) An Analysis of Recurrent Neural Networks for Botnet Detection Behavior. u: Proceedings of the IEEE Biennial Congress of Argentina (ARGENCON), Buenos Aires, Argentina, June 2016, Buenos Aires, 1-6
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I. (2017) Attention is All you Need. u: Proceedings of the 31st International Conference on Neural Information Processing Systems -Advances in Neural Information Processing Systems (NIPS 2017), Long Beach, USA, Vol. 30, December 2017, Long Beach, USA, 30: 6000-6010
Wang, J., Zhao, L., Liu, J., Kato, N. (2021) Smart Resource Allocation for Mobile Edge Computing: A Deep Reinforcement Learning Approach. IEEE Transactions on Emerging Topics in Computing, 9(3): 1529-1541
Wang, J., Tang, J., Xu, Z., Wang, Y., Xue, G., Zhang, X., Yang, D. (2017) Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach. u: Proceedings of the IEEE Conference on Computer Communications, Atlanta, USA, May 2017, Atlanta, 1-9
Wang, W., Zhu, M., Zeng, X., Ye, X., Sheng, Y. (2017) Malware Traffic Classification Using Convolutional Neural Network for Representation Learning. u: Proceedings of the International Conference on Information Networking (ICOIN), Da Nang, Vietnam, January 2017, Da Nang, Vietnam, 712-717
Wang, W., Zhu, M., Wang, J., Zeng, X., Yang, Z. (2017) End-to-end encrypted traffic classification with one-dimensional convolution neural networks. u: Proceedings of the IEEE International Conference on Intelligence and Security Informatics: Security and Big Data (ISI 2017), Beijing, China, July 2017, Beijing, China, 43-48
Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., Xu, H. (2021) Time Series Data Augmentation for Deep Learning: A Survey. 1-9, ArXiv, https://arxiv.org/abs/2002.12478
West, N.E., o'Shea Tim (2017) Deep architectures for modulation recognition. u: Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Baltimore, USA, March 2017, Baltimore, MD, 1-6
Wijaya, M.A., Fukawa, K., Suzuki, H. (2015) Intercell-Interference Cancellation and Neural Network Transmit Power Optimization for MIMO Channels. u: Proceedings of the IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, USA, September 2015, Boston, MA, 1-5
Wolf, T., et al. (2020) Transformers : State-of-the-Art Natural Language Processing. u: Proceedings of the Conference on Empirical Methods in Natural Language Processing: Systems Demonstrations (EMNLP 2020), Online, October 2020, 38-45
Xiong, Z., Zhang, Y., Niyato, D., Deng, R., Wang, P., Wang, L. (2019) Deep Reinforcement Learning for Mobile 5G and Beyond: Fundamentals, Applications, and Challenges. IEEE Vehicular Technology Magazine, 14(2): 44-52
Yazti, D.Z., Krishnaswamy, S. (2014) Mobile Big Data Analytics: Research, Practice, and Opportunities. u: Proceedings of the IEEE 15th International Conference on Mobile Data Management, Brisbane, Australia, July 2014, Brisbane, Australia, 1: 1-2
Yoshioka, T., et al. (2015) The NTT CHiME-3 System: Advances in Speech Enhancement and Recognition for Mobile Multi-Microphone Devices. u: Proceedings of the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Scottsdale, USA, December 2015, Scottsdale, USA, 436-443
Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., Jue, J.P. (2019) All one needs to know about fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98: 289-330
Yuan, Z., Lu, Y., Wang, Z., Xue, Y. (2014) Droid-Sec: Deep Learning in Android Malware Detection. ACM SIGCOMM Computer Communication Review, 44(4): 371-372
Zhang, C., Ouyang, X., Patras, P. (2017) ZipNet-GAN: Inferring Fine-Grained Mobile Traffic Patterns via a Generative Adversarial Neural Network. u: Proceedings of the 13th International Conference on emerging Networking EXperiments and Technologies (CoNEXT '17), Incheon, Korea, December 2017, Incheon, Korea, 363-375
Zhang, C., Patras, P. (2018) Long-Term Mobile Traffic Forecasting Using Deep Spatio-Temporal Neural Networks. u: Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc '18), Los Angeles, USA, June 2018, Los Angeles, 231-240
Zhang, C., Patras, P., Haddadi, H. (2019) Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Communications Surveys and Tutorials, 21(3): 2224-2287
Zhao, M., Tian, Y., Zhao, H., Abu, A.M., Li, T., Hristov, R., Kabelac, Z., Katabi, D., Torralba, A. (2018) RF-based 3D skeletons. u: Proceedings of the Conference of the ACM Special Interest Group on Data Communication (SIGCOMM '18), Budapest, Hungary, August 2018, Budapest, 267-281
Zhao, X., Yang, K., Chen, Q., Peng, D., Jiang, H., Xu, X., Shuang, X. (2019) Deep learning based mobile data offloading in mobile edge computing systems. Future Generation Computer Systems, 99: 346-355
Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., Xiang, W. (2016) Big data-driven optimization for mobile networks toward 5G. IEEE Network, 30(1): 44-51
Zhong, C., Gursoy, M.C., Velipasalar, S. (2018) A Deep Reinforcement Learning-Based Framework for Content Caching. u: Proceedings of the 52nd Annual Conference on Information Sciences and Systems (CISS 2018), Princeton, USA, March 2018, Princeton, NJ, 1-6
Zhou, Y., Fadlullah, Z.M., Mao, B., Kato, N. (2018) A Deep-Learning-Based Radio Resource Assignment Technique for 5G Ultra Dense Networks. IEEE Network, 32(6): 28-34
Zhou, Z., Feng, J. (2017) Deep Forest: Towards An Alternative to Deep Neural Networks. u: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17), Melbourne, Australia, August 2017, Melbourne, Australia, 3553-3559
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE2103397D
objavljen u SCIndeksu: 10.12.2021.
Creative Commons License 4.0

Povezani članci

Medicinski podmladak (2018)
Pristupi dubokog učenja za prepoznavanje aktivnosti ljudi primenom odevne tehnologije
Janković Milica, i dr.

FU: Electron&Energetics (2001)
Exploration-exploitation trade-off in machine learning
Pokrajac Dragoljub, i dr.

FU: Mechan Engineering (2003)
Inteligentno upravljanje složenim procesima sagorevanja
Ćojbašić Žarko, i dr.

prikaži sve [6]