Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:1
  • full-text downloads in 30 days:0

Contents

article: 2 from 2  
Back back to result list
A comparison between two character recognition approaches
'Politehnica' University of Timisoara, Department of Automation and Applied Informatics, Timisoara, Romania

emaillucian.fedorovici@aut.upt.ro
Keywords: OCR engine; character recognition; neural networks; SVM classifier; performance improvements
Abstract
This paper presents the architecture of an Optical Character Recognition (OCR) technology application based on two approaches, a multilayer neural network and a Support Vector Machine (SVM) classifier using Zernike moments for feature extraction. The performance comparison of the two approaches is based on the similar layout of most of the characters that must be recognized. The comparison shows that the improvement of the processing performance can be obtained by creating classes of blobs that use geometric similarities, and doing OCR only on the representative blob from each class.
References
Arbter, K., Snyder, W.E., Burkhardt, H., Hirzinger, G. (1990) Application of affine-invariant Fourier descriptors to recognition of 3-D objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7): 640-647
Baranyi, P., le K.F., Yam, Y. (2000) Complexity reduction of singleton based neuro-fuzzy algorithm. Proc. IEEE Intl. Conf. Systems, Man, and Cybernetics (SMC, Nashville00), vol. 4, str. 2503-2508
Baranyi, P., Tikk, D., Yam, Y., Patton, R.J. (2003) From differential equations to PDC controller design via numerical transformation. Computers in Industry, 51(3): 281-297
Belkasim, S.O., Shridhar, M., Ahmadi, M. (1991) Pattern recognition with moment invariants: A comparative study and new results. Pattern Recognition, vol. 14, str. 1117-1138, Dec
Bellili, A., Gilloux, M., Gallinari, P. (2001) An hybrid MLP-SVM handwritten digit recognizer. in: Document Analysis and Recognition, str. 28-32
Blažič, S., Škrjanc, I., Matko, D. (2003) Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets and Systems, 139(1): 3-33
Chong, C.W., Mukundan, R., Raveendran, P. (2003) An efficient algorithm for fast computation of pseudo-Zernike moment. IJPRAI, vol. 17, str. 1011-1023
Dong, J., Krzyak, A., Suen, C.Y. (2005) An improved handwritten Chinese character recognition system using support vector machine. Pattern Recognition Letters, 26(12): 1849-1856
Fedorovici, L.O., Dragan, F. (2011) A comparison between a neural network and a SVM and Zernike moments based blob recognition modules. in: Proc. SACI 2011, Timisoara, str. 253-258
Fedorovici, L.O., Voisan, E., Dragan, F., Iercan, D. (2010) Improved neural network OCR based on preprocessed blob classes. in: Proc. ICCC-CONTI 2010, Timisoara, str. 559-564
Flusser, J., Suk, T. (1993) Pattern recognition by affine moment invariants. Pattern Recognition, 26(1): 167
Flusser, J., Suk, T. (1994) Affine moment invariants: a new tool for character recognition. Pattern Recognition Letters, 15(4): 433-436
Garcia, A., Luviano-Juarez, A., Chairez, I., Poznyak, A., Poznyak, T. (2011) Projectional dynamic neural network identifier for chaotic systems: Application to Chuas circuit. Int. J. Artif. Intell, vol. 6, str. 1-18, Mar
Haykin, S. (1999) Neural Networks: A comprehensive foundation. Prentice Hall
Hladek, D., Vaščák, J., Sinčák, P. (2009) Multi-robot control system for pursuit-evasion problem. J. Electr. Eng, vol. 60, str. 143-148, Jun
Hsu, C.W., Chang, C.C., Lin, C.J. (2008) A practical guide to support vector classification. Taiwan: Department of Computer Science, www.csie.ntu.edu.tw/~cjlin
Iglesias, J.A., Angelov, P., Ledezma, A., Sanchis, A. (2010) Evolving classification of agents' behaviors: A general approach. Evolving Systems, 1(3): 161-171
Johanyák, Z.C. (2010) Student evaluation based on fuzzy rule interpolation. Int. J. Artif. Intell, vol. 5, str. 37-55, Sep
Johanyák, Z.C., Kovács, S. (2006) Fuzzy rule interpolation based on polar cuts. in: Reusch B. [ed.] Computational Intelligence, Theory and Applications, Berlin - Heidelberg - New York: Springer-Verlag, str. 499-511
Johnson, M. (2009) SVM.net. Available: http://www.matthewajohnson.org/software/svm.html
Jovanović, Z., Antić, D., Stajić, Z., Milošević, M., Nikolić, S., Perić, S. (2011) Određivanje parametara modela 3D krana korišćenjem genetičkih algoritama. Facta universitatis - series: Automatic Control and Robotics, vol. 10, br. 1, str. 19-27
Khotanzad, A., Hong, Y.H. (1990) Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5): 489-497
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998) Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324
Mahmoud, S.A., Olatunji, S.O. (2009) Automatic recognition of off-line handwritten Arabic (Indian) numerals using support vector and extreme learning machines. Int. Journal of Imaging and Robotics, vol. 2, str. 34-53
Precup, R.E., David, R.C., Petriu, E.M., Preitl, S., Rădac, M.B. (2011) Fuzzy control systems with reduced parametric sensitivity based on simulated annealing. IEEE Trans. Ind. Electron, DOI 10.1109/TIE.2011.2130493
Rădac, M.B., Precup, R.E., Petriu, E.M., Preitl, S. Application of IFT and SPSA to servo system control. IEEE Trans. Neural Netw., DOI 10.1109/TNN.2011.2173804
Ramanathan, R., Thaneshwaran, L., Viknesh, V., Arunkumar, T., Yuvaraj, P., Soman, K.P. (2009) A novel technique for English font recognition using support vector machines. ARTCom, str. 766-769
Simard, P.Y., Steinkraus, D., Platt, J. (2003) Best practices for convolutional neural networks applied to visual document analysis. ICDAR, str. 958-962
Skrjanc, I., Blazic, S., Oblak, S., Richalet, J. (2004) An approach to predictive control of multivariable time-delayed plant: stability and design issues. ISA transactions, 43(4): 585-95
Tay, Y., Lallican, P., Khalid, M., Viard-Gaudin, C., Knerr, S. (2001) An offline cursive handwriting word recognition system. in: IEEE region 10 TENCON conference, Proceedings, str. 519-524
Vapnik, V. (1999) An overview of statistical learning theory. IEEE Transactions on Neural Networks, vol. 10, str. 988-1000, Jan
Vapnik, V.N. (1998) Statistical learning theory. New York: Wiley
Vaščák, J. (2005) Evolutionary migration algorithms for scheduling. in: Applied Machine Intelligence (SAMI 2005), 3rd Slovakian-Hungarian Joint Symposium, Herľany, Slovakia, Proc, str. 21-32
Zhang, D., Lu, G. (2002) A comparative study of three region shape descriptors. in: Proc. DICTA, str. 21-22
Zhang, T., Wang, X., Chen, C., Liu, J. (2009) Connected Numeral Strings Segmentation Based on the Combination of Characteristic Position and Contour Detecting. in: Proc. ICDIP, str. 81-84
 

About

article language: English
document type: unclassified
published in SCIndeks: 30/03/2012

Related records

FU: Electron&Energetics (2010)
Mid-term load forecasting using recursive time series prediction strategy with support vector machines
Stojanović Miloš B., et al.

FU: Electron&Energetics (2001)
Exploration-exploitation trade-off in machine learning
Pokrajac Dragoljub, et al.

FU: Electron&Energetics (2006)
Enhancing robustness of speech recognizers by bimodal features
Gavat Inge, et al.

show all [20]