- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:6
- preuzimanja u poslednjih 30 dana:4
|
|
2021, vol. 69, br. 5-6, str. 306-317
|
Analiza glavnih komponenata u određivanju reprezentativnih finansijskih pokazatelja u sektoru neživotnih osiguranja u Srbiji
Principal component analysis in determining representative financial ratios within non-life insurance sector in Serbia
Univerzitet u Beogradu, Ekonomski fakultet, Katedra za statistiku i matematiku, Srbija
Sažetak
Predmet rada je primena analize glavnih komponenata u određivanju reprezentativnih finansijskih pokazatelja u sektoru neživotnih osiguranja. Cilj istraživanja je da se, polazeći od mnoštva finansijskih pokazatelja koji se susreću u literaturi u oblasti osiguranja, identifikuje manji skup pokazatelja koji su najrelevantniji za ocenu finansijskog položaja i performansi kompanija koje se bave poslovima neživotnih osiguranja u Srbiji, uz minimalan gubitak informacija. Na osnovu finansijskih izveštaja neživotnih i kompozitnih osiguravača tokom perioda 2010-2019. godine, izračunato je 38 finansijskih pokazatelja, koji su razvrstani u sedam kategorija (adekvatnost kapitala, kvalitet imovine, rizik i performanse reosiguranja, adekvatnost tehničkih rezervi, profitabilnost, likvidnost i kvalitet menadžmenta). Primenom paralelne analize i Velicerovog minimalnog prosečnog delimičnog testa, utvrđeno je da je sa svega šest finansijskih pokazatelja moguće objasniti 85% varijabiliteta inicijalnog skupa pokazatelja. Dobijeni rezultati mogu biti korišćeni u svrhe efikasne finansijske analize pojedinačnih osiguravajućih kompanija i celokupnog sektora neživotnih osiguranja u Srbiji.
Abstract
The paper deals with the application of principal component analysis in determining financial ratios that are representative within non-life insurance sector. Starting from many financial indicators found in the literature in the field of insurance, the purpose of the study is to identify a smaller set of ratios that are most relevant for assessing the financial position and performance of non-life insurance companies in Serbia with a minimum loss of information. On the basis of financial reports of nonlife and composite insurers in the period 2010-2019, we calculated 38 financial ratios, grouped into seven categories (capital adequacy, asset quality, reinsurance risk and performance, adequacy of technical reserves, profitability, liquidity and management soundness). Using parallel analysis and Velicer's minimum average partial test, we found that it is possible to explain 85% of variability of the initial set of ratios with six financial ratios. The obtained results can be used for the purposes of efficient financial analysis of individual insurance companies and the entire nonlife insurance sector in Serbia.
|
|
|
Reference
|
|
*** (2019) Property and Casualty Insurers Methodology. New York: Moody's Investors Service
|
|
*** (2017) IBM SPSS Statistics Algorithms. Armonk, NY: IBM Corporation
|
|
Armeanu, D., Lache, L. (2008) Application of the Model of Principal Components Analysis on Romanian Insurance Market. Theoretical and Applied Economics, 6(523): 11-20
|
|
Arterton, A.J., Dean, J.W., Michaelides, N., Silverman, A.H., Vince, A.R. (1993) What ratios really matter?. u: General Insurance Convention 1993, Institute and Faculty of Actuaries
|
|
Das, U., Davies, N., Podpiera, R. (2003) Insurance and Issues in Financial Soundness. IMF Working Papers, 03(138): 1-43
|
|
de A., Bandyopadhyay, G., Chakraborty, B.N. (2011) Application of the Factor Analysis on the Financial Ratios and Validation of the Results by the Cluster Analysis: An Empirical Study on the Indian Cement Industry. Journal of Business Studies Quarterly, 2(3): 13-31
|
|
Dimitropoulos, P.E., Asteriou, D., Koumanakos, E. (2010) The relevance of earnings and cashflows in a heavily regulated industry: Evidence from the Greek banking sector. Advances in Accounting, 26(2): 290-303
|
|
Erdemir, Ö.K., Tatlidil, H. (2017) Data Reduction in Data Envelopment Analysis: A Research on Efficiency of Insurance Companies. Journal of Current Researches on Business and Economics, 7(1): 65-77
|
|
Geraci, M., Farcomeni, A. (2018) Principal Component Analysis in the Presence of Missing Data. u: Naik G.R. [ur.] Advances in Principal Component Analysis, Singapore: Springer Nature Singapore Pte Ltd, 47-70
|
|
Hair, J.F. J., Black, W.C., Babin, B.J., Anderson, R.E. (2019) Multivariate Data Analysis. Andover: Cengage Learning, Eighth Edition
|
|
Hardle, W.K., Simar, L. (2015) Applied Multivariate Statistical Analysis. Berlin: Springer-Verlag, Fourth Edition
|
3
|
Ho, R. (2014) Handbook of Univariate and Multivariate Data Analysis with IBM SPSS. Boca Raton, FL: CRC Press, Second Edition
|
|
Johnson, R., Wichern, D. (2014) Applied Multivariate Statistical Analysis. Harlow: Pearson Education Limited, Sixth Edition
|
5
|
Jolliffe, I.T. (2002) Principal Component Analysis. New York: Springer-Verlang New York, Inc, Second Edition
|
|
Kwon, W.J., Wolfrom, L. (2016) Analytical tools for the insurance market and macro-prudential surveillance. OECD Journal: Financial Market Trends, 2016(1)
|
1
|
Larose, D.T., Larose, C.D. (2015) Data Mining and Predictive Analytics. Hoboken, NJ: John Wiley & Sons, Inc, Second Edition
|
|
Lukason, O., Laitinen, E.K. (2016) Failure processes of old manufacturing firms in different European countries. Investment Management and Financial Innovations, 13(2): 310-321
|
1
|
National Bank of Serbia Insurance undertakings operations. available at https://nbs.rs/sr/finansijske-institucije/osiguranje/ poslovanje/, accessed 15.03.2021
|
|
Öcal, M.E., Oral, E.L., Erdis, E., Vural, G. (2007) Industry financial ratios: Application of factor analysis in Turkish construction industry. Building and Environment, 42: 385-392
|
5
|
o'Connor B.P. (2000) SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instruments, & Computers, 32(3): 396-402
|
|
Outreville, J.F. (1998) Theory and Practice of Insurance. Boston, MA: Springer
|
|
Pinches, G.E., Mingo, K.A., Caruthers, J.K. (1973) The Stability of Financial Patterns in Industrial Organizations. Journal of Finance, 28(2): 389-396
|
1
|
Pituch, K.A., Stevens, J.P. (2016) Applied Multivariate Statistics for the Social Sciences: Analyses with SAS and IBM's SPSS. New York: Routledge, Sixth edition
|
|
Sanz, J.Á., Bedate, A.M., Durántez, M. (2018) Determining some factors of the financial situation in the European Union publishing sector. Review of Economic Perspectives, 18(1): 25-43
|
76
|
Tabachnick, B.G., Fidell, L.S. (2014) Using Multivariate Statistics. Harlow: Pearson Education Limited, Sixth Edition
|
1
|
Tacq, J. (1997) Multivariate Analysis Techniques in Social Science Research. London: Sage Publications
|
|
Vergara, J., Serna, M. (2018) Factor Analysis to Evaluate the Financial Performance of the Construction Industry in an Emerging Market: The Case of Colombia. Revista de Métodos Cuantitativos para la Economía y la Empresa, 178(1): 52-70
|
|
Wendler, T., Grottrup, S. (2016) Data Mining with SPSS Modeler. Switzerland: Springer International Publishing Switzerland
|
|
Yap, B.C.-F., Mohamad, Z., Chong, K.-R. (2013) The Application of Principal Component Analysis in the Selection of Industry Specific Financial Ratios. British Journal of Economics, Management & Trade, 3(3): 242-252
|
|
Yoshino, N., Taghizadeh-Hesary, F. (2015) Analysis of Credit Ratings for Small and Medium-Sized Enterprises: Evidence from Asia. Asian Development Review, 32(2): 18-37
|
|
|
|